論文の概要: VivesDebate-Speech: A Corpus of Spoken Argumentation to Leverage Audio
Features for Argument Mining
- arxiv url: http://arxiv.org/abs/2302.12584v1
- Date: Fri, 24 Feb 2023 11:44:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-27 13:45:42.210648
- Title: VivesDebate-Speech: A Corpus of Spoken Argumentation to Leverage Audio
Features for Argument Mining
- Title(参考訳): VivesDebate-Speech:モーメント・マイニングのための音声機能を活用した音声処理コーパス
- Authors: Ramon Ruiz-Dolz and Javier Iranzo-S\'anchez
- Abstract要約: VivesDebate-Speechについて述べる。これは音声機能を利用した口頭弁論のコーパスである。
我々は,議論マイニングパイプラインに音声機能を統合する際の改良点を示す,先駆的な実験を行った。
- 参考スコア(独自算出の注目度): 5.482532589225552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we describe VivesDebate-Speech, a corpus of spoken
argumentation created to leverage audio features for argument mining tasks. The
creation of this corpus represents an important contribution to the
intersection of speech processing and argument mining communities, and one of
the most complete publicly available resources in this topic. Moreover, we have
performed a set of first-of-their-kind experiments which show an improvement
when integrating audio features into the argument mining pipeline. The provided
results can be used as a baseline for future research.
- Abstract(参考訳): 本稿では,音声機能を利用した口頭弁論コーパスであるVivesDebate-Speechについて述べる。
このコーパスの作成は、音声処理と議論のマイニングコミュニティの交点への重要な貢献であり、このトピックにおいて最も完全なパブリックリソースの1つである。
さらに,議論マイニングパイプラインに音声機能を統合する際の改良点を示す,先駆的な実験のセットも実施している。
得られた結果は将来の研究のベースラインとして利用できる。
関連論文リスト
- EmphAssess : a Prosodic Benchmark on Assessing Emphasis Transfer in Speech-to-Speech Models [25.683827726880594]
EmphAssessは,音声合成モデルの韻律強調を符号化し再現する能力を評価するためのベンチマークである。
音声合成と音声合成の2つの課題に適用する。
どちらの場合も、ベンチマークは、モデルが音声入力の強調を符号化し、出力で正確に再現する能力を評価する。
評価パイプラインの一部として、フレームや単語レベルで強調を分類する新しいモデルであるEmphaClassを紹介する。
論文 参考訳(メタデータ) (2023-12-21T17:47:33Z) - Improving Speaker Diarization using Semantic Information: Joint Pairwise
Constraints Propagation [53.01238689626378]
本稿では,話者ダイアリゼーションシステムにおける意味情報を活用する新しい手法を提案する。
音声言語理解モジュールを導入し、話者関連意味情報を抽出する。
本稿では,これらの制約を話者ダイアリゼーションパイプラインに統合する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-19T09:13:30Z) - Question-Interlocutor Scope Realized Graph Modeling over Key Utterances
for Dialogue Reading Comprehension [61.55950233402972]
本稿では,対話読解のためのキーワード抽出手法を提案する。
複数の連続した発話によって形成された単位に対して予測を行い、より多くの回答を含む発話を実現する。
発話のテキスト上に構築されたグラフとして,質問-対話者スコープ実現グラフ(QuISG)モデルを提案する。
論文 参考訳(メタデータ) (2022-10-26T04:00:42Z) - IAM: A Comprehensive and Large-Scale Dataset for Integrated Argument
Mining Tasks [59.457948080207174]
本稿では,一連の議論マイニングタスクに適用可能なIAMという,包括的で大規模なデータセットを提案する。
データセットの70k近い文は、引数特性に基づいて完全に注釈付けされている。
議論準備プロセスに関連する2つの新しい統合された議論マイニングタスクを提案する。(1) 姿勢分類付きクレーム抽出(CESC)と(2) クレーム・エビデンス・ペア抽出(CEPE)である。
論文 参考訳(メタデータ) (2022-03-23T08:07:32Z) - DebateSum: A large-scale argument mining and summarization dataset [0.0]
DebateSumは187,386個の独特な証拠と、対応する議論と抽出的な要約で構成されている。
DebateSum上でいくつかの変換器要約モデルを用いて要約性能のベンチマークを行う。
本稿では,全国言語討論会のメンバーによって広く活用されているデータセットの検索エンジンについて述べる。
論文 参考訳(メタデータ) (2020-11-14T10:06:57Z) - Exploring the Role of Argument Structure in Online Debate Persuasion [39.74040217761505]
オンライン討論会における議論における議論の談話構造の役割について考察する。
我々は、より優れた予測性能を達成する上で、引数構造が重要な役割を担っていることを発見した。
論文 参考訳(メタデータ) (2020-10-07T17:34:50Z) - Extracting Implicitly Asserted Propositions in Argumentation [8.20413690846954]
本研究では,議論において暗黙的に主張された命題,報告された言論,命令文を抽出する手法について検討した。
本研究は,これらのレトリック装置の論証マイニングとセマンティクスに関する今後の研究について報告する。
論文 参考訳(メタデータ) (2020-10-06T12:03:47Z) - Aspect-Controlled Neural Argument Generation [65.91772010586605]
我々は、与えられたトピック、スタンス、アスペクトの文レベル引数を生成するために、きめ細かいレベルで制御できる引数生成のための言語モデルを訓練する。
評価の結果,我々の生成モデルは高品質なアスペクト特異的な議論を生成できることがわかった。
これらの議論は、データ拡張による姿勢検出モデルの性能向上と、逆問題の生成に使用できる。
論文 参考訳(メタデータ) (2020-04-30T20:17:22Z) - AMPERSAND: Argument Mining for PERSuAsive oNline Discussions [41.06165177604387]
本稿では,オンライン議論フォーラムにおける議論マイニングのための計算モデルを提案する。
我々のアプローチは、議論スレッド内の引数のコンポーネント間の関係を識別することに依存します。
我々のモデルは最近の最先端のアプローチと比較して大幅に改善されている。
論文 参考訳(メタデータ) (2020-04-30T10:33:40Z) - Speech Enhancement using Self-Adaptation and Multi-Head Self-Attention [70.82604384963679]
本稿では,補助的話者認識機能を用いた音声強調のための自己適応手法について検討する。
テスト発話から直接適応に用いる話者表現を抽出する。
論文 参考訳(メタデータ) (2020-02-14T05:05:36Z) - Improving speaker discrimination of target speech extraction with
time-domain SpeakerBeam [100.95498268200777]
SpeakerBeamは、ターゲット話者の適応発話を利用して、声の特徴を抽出する。
SpeakerBeamは、同じジェンダーのミキシングのように、話者が似たような音声特性を持つときに失敗することがある。
実験により、これらの戦略は、特に同性混合において、音声抽出性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2020-01-23T05:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。