論文の概要: Learning to Estimate Single-View Volumetric Flow Motions without 3D
Supervision
- arxiv url: http://arxiv.org/abs/2302.14470v1
- Date: Tue, 28 Feb 2023 10:26:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-01 17:01:23.167739
- Title: Learning to Estimate Single-View Volumetric Flow Motions without 3D
Supervision
- Title(参考訳): 3次元シュミレーションを伴わない単視点体積運動の学習
- Authors: Erik Franz (1), Barbara Solenthaler (2 and 3), Nils Thuerey (1) ((1)
Technical University of Munich (TUM), (2) ETH Zurich, (3) TUM - Institute for
Advanced Study)
- Abstract要約: トレーニングに3次元地上真理を必要とせずに,対応するネットワークをトレーニングすることが可能であることを示す。
地上の真実データがない場合には、合成再構成に頼るのではなく、実世界の観測装置でモデルを訓練することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the challenging problem of jointly inferring the 3D flow and
volumetric densities moving in a fluid from a monocular input video with a deep
neural network. Despite the complexity of this task, we show that it is
possible to train the corresponding networks without requiring any 3D ground
truth for training. In the absence of ground truth data we can train our model
with observations from real-world capture setups instead of relying on
synthetic reconstructions. We make this unsupervised training approach possible
by first generating an initial prototype volume which is then moved and
transported over time without the need for volumetric supervision. Our approach
relies purely on image-based losses, an adversarial discriminator network, and
regularization. Our method can estimate long-term sequences in a stable manner,
while achieving closely matching targets for inputs such as rising smoke
plumes.
- Abstract(参考訳): 本稿では,深層ニューラルネットワークを用いた単眼入力映像から流体中を移動する3次元流れと体積密度を共同で推定する課題を解決する。
このタスクの複雑さにもかかわらず、トレーニングに3D基底真理を必要とせず、対応するネットワークをトレーニングすることが可能であることを示す。
地上の真実データがない場合には、合成再構成に頼るのではなく、実世界の観測装置でモデルを訓練することができる。
本研究では,まず初期プロトタイプのボリュームを生成して,ボリュームの監督を必要とせずに時間とともに移動・輸送することで,教師なしのトレーニングアプローチを可能にする。
我々のアプローチは、画像に基づく損失、敵対的差別者ネットワーク、正規化に依存している。
本手法は,スモークプルームの上昇など入力の目標と密接に一致しながら,長期のシーケンスを安定的に推定することができる。
関連論文リスト
- ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
既存の手法は、これらのタスクの要求に応えるために高い精度を優先する。
本稿では,3次元セマンティック占有率予測とフロー推定のための一連の改善点を紹介する。
私たちの純粋な時間的アーキテクチャフレームワークであるALOccは、速度と精度の最適なトレードオフを実現しています。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - NCP: Neural Correspondence Prior for Effective Unsupervised Shape
Matching [31.61255365182462]
我々は3次元形状間の対応を計算するための新しいパラダイムであるニューラル対応優先(NCP)を提案する。
我々のアプローチは完全に教師なしであり、挑戦する場合でも高品質な対応に繋がる可能性がある。
NCPは、多くのタスクにおいて、データ効率、高速、そして最先端の結果であることを示す。
論文 参考訳(メタデータ) (2023-01-14T07:22:18Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
本稿では,ポイントクラウド上で動作している深層知覚モデルのバックボーンを事前学習するための自己教師型手法を提案する。
中心となる考え方は、3Dポイントがサンプリングされる表面の再構成であるプリテキストタスクでモデルをトレーニングすることである。
直感的には、もしネットワークがわずかな入力ポイントのみを考慮し、シーン表面を再構築できるなら、おそらく意味情報の断片をキャプチャする。
論文 参考訳(メタデータ) (2022-12-12T13:10:19Z) - OReX: Object Reconstruction from Planar Cross-sections Using Neural
Fields [10.862993171454685]
OReXはスライス単独で3次元形状を復元する手法であり、前者がニューラルネットワーク勾配である。
適度なニューラルネットワークは入力平面上でトレーニングされ、与えられた3D座標の内外推定を返却し、滑らかさと自己相似性を誘導する強力な先行を与える。
我々は、粗大な訓練を奨励する反復的な推定アーキテクチャと階層的な入力サンプリングスキームを提供し、訓練プロセスは後段の高周波に集中できるようにする。
論文 参考訳(メタデータ) (2022-11-23T11:44:35Z) - RAUM-VO: Rotational Adjusted Unsupervised Monocular Visual Odometry [0.0]
本稿では,フレーム間動き推定のためのモデルフリーなエピポーラ制約に基づくRAUM-VOを提案する。
RAUM-VOは、KITTIデータセット上の他の教師なしポーズネットワークと比較してかなり精度が向上している。
論文 参考訳(メタデータ) (2022-03-14T15:03:24Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
ハンドヘルド環境に現れる複雑な自我運動が,学習深度にとって重要な障害であることが確認された。
本稿では,相対回転を除去してトレーニング画像の修正を効果的に行うデータ前処理手法を提案する。
その結果、従来の教師なしSOTA法よりも、難易度の高いNYUv2データセットよりも優れていた。
論文 参考訳(メタデータ) (2020-06-04T08:59:17Z) - Self-Supervised Monocular Scene Flow Estimation [27.477810324117016]
本稿では,競争精度とリアルタイム性能を両立させる新しい単眼シーンフロー法を提案する。
逆問題の観点から、深度と3次元運動を同時に推定する単一畳み込みニューラルネットワーク(CNN)を設計する。
論文 参考訳(メタデータ) (2020-04-08T17:55:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。