EFiGP: Eigen-Fourier Physics-Informed Gaussian Process for Inference of Dynamic Systems
- URL: http://arxiv.org/abs/2501.14107v1
- Date: Thu, 23 Jan 2025 21:35:02 GMT
- Title: EFiGP: Eigen-Fourier Physics-Informed Gaussian Process for Inference of Dynamic Systems
- Authors: Jianhong Chen, Shihao Yang,
- Abstract summary: estimation and trajectory reconstruction for data-driven dynamical systems governed by ordinary differential equations (ODEs) are essential tasks in fields such as biology, engineering, and physics.
We propose the Eigen-Fourier Physics-Informed Gaussian Process (EFiGP), an algorithm that integrates Fourier transformation and eigen-decomposition into a physics-informed Gaussian Process framework.
- Score: 0.9361474110798144
- License:
- Abstract: Parameter estimation and trajectory reconstruction for data-driven dynamical systems governed by ordinary differential equations (ODEs) are essential tasks in fields such as biology, engineering, and physics. These inverse problems -- estimating ODE parameters from observational data -- are particularly challenging when the data are noisy, sparse, and the dynamics are nonlinear. We propose the Eigen-Fourier Physics-Informed Gaussian Process (EFiGP), an algorithm that integrates Fourier transformation and eigen-decomposition into a physics-informed Gaussian Process framework. This approach eliminates the need for numerical integration, significantly enhancing computational efficiency and accuracy. Built on a principled Bayesian framework, EFiGP incorporates the ODE system through probabilistic conditioning, enforcing governing equations in the Fourier domain while truncating high-frequency terms to achieve denoising and computational savings. The use of eigen-decomposition further simplifies Gaussian Process covariance operations, enabling efficient recovery of trajectories and parameters even in dense-grid settings. We validate the practical effectiveness of EFiGP on three benchmark examples, demonstrating its potential for reliable and interpretable modeling of complex dynamical systems while addressing key challenges in trajectory recovery and computational cost.
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial
Networks for Stochastic Differential Equations [14.044012646069552]
We present a new category of physics-informed neural networks called physics informed embedding generative adversarial network (PI-VEGAN)
PI-VEGAN effectively tackles forward, inverse, and mixed problems of differential equations.
We evaluate the effectiveness of PI-VEGAN in addressing forward, inverse, and mixed problems that require the concurrent calculation of system parameters and solutions.
arXiv Detail & Related papers (2023-07-21T01:18:02Z) - On the Integration of Physics-Based Machine Learning with Hierarchical
Bayesian Modeling Techniques [0.0]
This paper proposes to embed mechanics-based models into the mean function of a Gaussian Process (GP) model and characterize potential discrepancies through kernel machines.
The stationarity of the kernel function is a difficult hurdle in the sequential processing of long data sets, resolved through hierarchical Bayesian techniques.
Using numerical and experimental examples, potential applications of the proposed method to structural dynamics inverse problems are demonstrated.
arXiv Detail & Related papers (2023-03-01T02:29:41Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.
This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
We propose a framework that can integrate all kinds of differential equations into Gaussian processes.
Our method shows improvement upon vanilla GPs in both simulation and several real-world applications.
arXiv Detail & Related papers (2022-02-24T19:02:14Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
We infer equations with non-Gaussian L'evy noise from available data to reasonably predict dynamical behaviors.
We establish a theoretical framework and design a numerical algorithm to compute the asymmetric L'evy jump measure, drift and diffusion.
This method will become an effective tool in discovering the governing laws from available data sets and in understanding the mechanisms underlying complex random phenomena.
arXiv Detail & Related papers (2021-07-21T14:50:36Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Learning Constrained Dynamics with Gauss Principle adhering Gaussian
Processes [7.643999306446022]
We propose to combine insights from analytical mechanics with Gaussian process regression to improve the model's data efficiency and constraint integrity.
Our model enables to infer the acceleration of the unconstrained system from data of the constrained system.
arXiv Detail & Related papers (2020-04-23T15:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.