Floquet Engineering to Overcome No-Go Theorem of Noisy Quantum Metrology
- URL: http://arxiv.org/abs/2303.00392v2
- Date: Wed, 2 Aug 2023 00:23:48 GMT
- Title: Floquet Engineering to Overcome No-Go Theorem of Noisy Quantum Metrology
- Authors: Si-Yuan Bai, Jun-Hong An
- Abstract summary: We propose a scheme to overcome the no-go theorem by Floquet engineering.
It is found that, by applying a periodic driving on the atoms of the Ramsey spectroscopy, the ultimate sensitivity to measure their frequency returns to the ideal $t2$ scaling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Permitting a more precise measurement to physical quantities than the
classical limit by using quantum resources, quantum metrology holds a promise
in developing many revolutionary technologies. However, the noise-induced
decoherence forces its superiority to disappear, which is called no-go theorem
of noisy quantum metrology and constrains its application. We propose a scheme
to overcome the no-go theorem by Floquet engineering. It is found that, by
applying a periodic driving on the atoms of the Ramsey spectroscopy, the
ultimate sensitivity to measure their frequency characterized by quantum Fisher
information returns to the ideal $t^2$ scaling with the encoding time whenever
a Floquet bound state is formed by the system consisting of each driven atom
and its local noise. Combining with the optimal control, this mechanism also
allows us to retrieve the ideal Heisenberg-limit scaling with the atom number
$N$. Our result gives an efficient way to avoid the no-go theorem of noisy
quantum metrology and to realize high-precision measurements.
Related papers
- Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems [1.2499537119440245]
Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
arXiv Detail & Related papers (2024-10-15T00:48:01Z) - Quantum Metrology via Floquet-Engineered Two-axis Twisting and Turn Dynamics [1.6373458286954379]
We find that the desired $N$-particle non-Gaussian state can be produced within a remarkably short time.
We may implement an efficient interaction-based readout protocol to extract the signal encoded in this non-Gaussian state.
arXiv Detail & Related papers (2024-09-13T04:12:12Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantum metrology in the noisy intermediate-scale quantum era [5.640610268831498]
Quantum metrology pursues the physical realization of higher-precision measurements to physical quantities.
It has potential applications in developing next-generation frequency standards, magnetometers, radar, and navigation.
However, the ubiquitous decoherence in the quantum world degrades the quantum resources and forces the precision back to or even worse than the classical limit.
arXiv Detail & Related papers (2023-07-15T04:05:47Z) - Heisenberg-limited quantum metrology using 100-photon Fock states [11.376914882465812]
We develop a programmable photon number filter that efficiently generates Fock states with up to 100 photons in a high-quality superconducting microwave cavity.
We demonstrate a precision scaling close to the Heisenberg limit and achieve a maximum metrological gain of up to 14.8 dB.
arXiv Detail & Related papers (2023-06-29T13:12:26Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Gaussian quantum metrology in a dissipative environment [4.8229512034776]
We propose a new scheme for high-precision quantum metrology.
The scheme achieves the precision of a sub-Heisenberg limit in the ideal case.
A mechanism to remove the no-go theorem is found in the non-Markovian dynamics.
arXiv Detail & Related papers (2021-07-28T04:26:38Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.