Active Learning and Bayesian Optimization: a Unified Perspective to Learn with a Goal
- URL: http://arxiv.org/abs/2303.01560v4
- Date: Sun, 7 Jul 2024 14:38:37 GMT
- Title: Active Learning and Bayesian Optimization: a Unified Perspective to Learn with a Goal
- Authors: Francesco Di Fiore, Michela Nardelli, Laura Mainini,
- Abstract summary: We propose a general classification of adaptive sampling techniques to highlight similarities and differences between the vast families of adaptive sampling, active learning, and Bayesian optimization.
We provide guidelines to apply those learning criteria investigating the performance of different Bayesian schemes for a variety of benchmark problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Science and Engineering applications are typically associated with expensive optimization problems to identify optimal design solutions and states of the system of interest. Bayesian optimization and active learning compute surrogate models through efficient adaptive sampling schemes to assist and accelerate this search task toward a given optimization goal. Both those methodologies are driven by specific infill/learning criteria which quantify the utility with respect to the set goal of evaluating the objective function for unknown combinations of optimization variables. While the two fields have seen an exponential growth in popularity in the past decades, their dualism and synergy have received relatively little attention to date. This paper discusses and formalizes the synergy between Bayesian optimization and active learning as symbiotic adaptive sampling methodologies driven by common principles. In particular, we demonstrate this unified perspective through the formalization of the analogy between the Bayesian infill criteria and active learning criteria as driving principles of both the goal-driven procedures. To support our original perspective, we propose a general classification of adaptive sampling techniques to highlight similarities and differences between the vast families of adaptive sampling, active learning, and Bayesian optimization. Accordingly, the synergy is demonstrated mapping the Bayesian infill criteria with the active learning criteria, and is formalized for searches informed by both a single information source and multiple levels of fidelity. In addition, we provide guidelines to apply those learning criteria investigating the performance of different Bayesian schemes for a variety of benchmark problems to highlight benefits and limitations over mathematical properties that characterize real-world applications.
Related papers
- BoTier: Multi-Objective Bayesian Optimization with Tiered Composite Objectives [0.0]
We introduce BoTier, a composite objective that can flexibly represent a hierarchy of preferences over both experiment outcomes and input parameters.
Importantly, BoTier is implemented in an auto-differentiable fashion, enabling seamless integration with the BoTorch library.
arXiv Detail & Related papers (2025-01-26T15:05:37Z) - Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation [10.77641869521259]
CMOBO balances learning of the feasible region with multi-objective optimization within the feasible region in a principled manner.
We provide both theoretical justification and empirical evidence, demonstrating the efficacy of our approach on various synthetic benchmarks and real-world applications.
arXiv Detail & Related papers (2024-11-06T03:38:00Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Pattern based learning and optimisation through pricing for bin packing problem [50.83768979636913]
We argue that when problem conditions such as the distributions of random variables change, the patterns that performed well in previous circumstances may become less effective.
We propose a novel scheme to efficiently identify patterns and dynamically quantify their values for each specific condition.
Our method quantifies the value of patterns based on their ability to satisfy constraints and their effects on the objective value.
arXiv Detail & Related papers (2024-08-27T17:03:48Z) - Benchmarking Optimizers for Qumode State Preparation with Variational Quantum Algorithms [10.941053143198092]
There has been a growing interest in qumodes due to advancements in the field and their potential applications.
This paper aims to bridge this gap by providing performance benchmarks of various parameters used in state preparation with Variational Quantum Algorithms.
arXiv Detail & Related papers (2024-05-07T17:15:58Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
Black-box optimization problems are common in many real-world applications.
These problems require optimization through input-output interactions without access to internal workings.
Two widely used gradient-free optimization techniques are employed to address such challenges.
This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods.
arXiv Detail & Related papers (2024-03-21T13:59:19Z) - Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
From Theory to Practice [54.03076395748459]
A central question in the meta-learning literature is how to regularize to ensure generalization to unseen tasks.
We present a generalization bound for meta-learning, which was first derived by Rothfuss et al.
We provide a theoretical analysis and empirical case study under which conditions and to what extent these guarantees for meta-learning improve upon PAC-Bayesian per-task learning bounds.
arXiv Detail & Related papers (2022-11-14T08:51:04Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Resource Aware Multifidelity Active Learning for Efficient Optimization [0.8717253904965373]
This paper introduces the Resource Aware Active Learning (RAAL) strategy to accelerate the optimization of black box functions.
The RAAL strategy optimally seeds multiple points at each allowing for a major speed up of the optimization task.
arXiv Detail & Related papers (2020-07-09T10:01:32Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
Model-a meta-learning (MAML) formulates meta-learning as a bilevel optimization problem, where the inner level solves each subtask based on a shared prior.
We characterize optimality of the stationary points attained by MAML for both learning and supervised learning, where the inner-level outer-level problems are solved via first-order optimization methods.
arXiv Detail & Related papers (2020-06-23T17:33:14Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.