BoTier: Multi-Objective Bayesian Optimization with Tiered Composite Objectives
- URL: http://arxiv.org/abs/2501.15554v1
- Date: Sun, 26 Jan 2025 15:05:37 GMT
- Title: BoTier: Multi-Objective Bayesian Optimization with Tiered Composite Objectives
- Authors: Mohammad Haddadnia, Leonie Grashoff, Felix Strieth-Kalthoff,
- Abstract summary: We introduce BoTier, a composite objective that can flexibly represent a hierarchy of preferences over both experiment outcomes and input parameters.
Importantly, BoTier is implemented in an auto-differentiable fashion, enabling seamless integration with the BoTorch library.
- Score: 0.0
- License:
- Abstract: Scientific optimization problems are usually concerned with balancing multiple competing objectives, which come as preferences over both the outcomes of an experiment (e.g. maximize the reaction yield) and the corresponding input parameters (e.g. minimize the use of an expensive reagent). Typically, practical and economic considerations define a hierarchy over these objectives, which must be reflected in algorithms for sample-efficient experiment planning. Herein, we introduce BoTier, a composite objective that can flexibly represent a hierarchy of preferences over both experiment outcomes and input parameters. We provide systematic benchmarks on synthetic and real-life surfaces, demonstrating the robust applicability of BoTier across a number of use cases. Importantly, BoTier is implemented in an auto-differentiable fashion, enabling seamless integration with the BoTorch library, thereby facilitating adoption by the scientific community.
Related papers
- Constrained Multi-objective Bayesian Optimization through Optimistic Constraints Estimation [10.77641869521259]
CMOBO balances learning of the feasible region with multi-objective optimization within the feasible region in a principled manner.
We provide both theoretical justification and empirical evidence, demonstrating the efficacy of our approach on various synthetic benchmarks and real-world applications.
arXiv Detail & Related papers (2024-11-06T03:38:00Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Active Learning and Bayesian Optimization: a Unified Perspective to Learn with a Goal [0.0]
We propose a general classification of adaptive sampling techniques to highlight similarities and differences between the vast families of adaptive sampling, active learning, and Bayesian optimization.
We provide guidelines to apply those learning criteria investigating the performance of different Bayesian schemes for a variety of benchmark problems.
arXiv Detail & Related papers (2023-03-02T20:22:40Z) - Differentiable Multi-Target Causal Bayesian Experimental Design [43.76697029708785]
We introduce a gradient-based approach for the problem of Bayesian optimal experimental design to learn causal models in a batch setting.
Existing methods rely on greedy approximations to construct a batch of experiments.
We propose a conceptually simple end-to-end gradient-based optimization procedure to acquire a set of optimal intervention target-state pairs.
arXiv Detail & Related papers (2023-02-21T11:32:59Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Constrained multi-objective optimization of process design parameters in
settings with scarce data: an application to adhesive bonding [48.7576911714538]
Finding the optimal process parameters for an adhesive bonding process is challenging.
Traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem.
In this research, we successfully applied specific machine learning techniques to emulate the objective and constraint functions.
arXiv Detail & Related papers (2021-12-16T10:14:39Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives.
In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions.
This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems.
arXiv Detail & Related papers (2021-11-04T20:18:55Z) - Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization [39.824086260578646]
This paper presents a novel trusted-maximizers entropy search (TES) acquisition function.
It measures how much an input contributes to the information gain on a query over a finite set of trusted maximizers.
arXiv Detail & Related papers (2021-07-30T07:25:07Z) - An Empirical Study of Assumptions in Bayesian Optimisation [61.19427472792523]
In this work we rigorously analyse conventional and non-conventional assumptions inherent to Bayesian optimisation.
We conclude that the majority of hyper- parameter tuning tasks exhibit heteroscedasticity and non-stationarity.
We hope these findings may serve as guiding principles, both for practitioners and for further research in the field.
arXiv Detail & Related papers (2020-12-07T16:21:12Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
Experimenters can often acquire the knowledge about the location of the global optimum.
It is unknown how to incorporate the expert prior knowledge about the global optimum into Bayesian optimization.
An efficient Bayesian optimization approach has been proposed via posterior sampling on the posterior distribution of the global optimum.
arXiv Detail & Related papers (2020-02-26T01:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.