Pyramid Pixel Context Adaption Network for Medical Image Classification with Supervised Contrastive Learning
- URL: http://arxiv.org/abs/2303.01917v3
- Date: Thu, 2 May 2024 01:22:42 GMT
- Title: Pyramid Pixel Context Adaption Network for Medical Image Classification with Supervised Contrastive Learning
- Authors: Xiaoqing Zhang, Zunjie Xiao, Xiao Wu, Yanlin Chen, Jilu Zhao, Yan Hu, Jiang Liu,
- Abstract summary: We propose a practical yet lightweight architectural unit, Pyramid Pixel Context Adaption (PPCA) module.
PPCA exploits multi-scale pixel context information to recalibrate pixel position in a pixel-independent manner.
We show that PPCANet outperforms state-of-the-art attention-based networks and recent deep neural networks.
- Score: 9.391271552098878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial attention mechanism has been widely incorporated into deep neural networks (DNNs), significantly lifting the performance in computer vision tasks via long-range dependency modeling. However, it may perform poorly in medical image analysis. Unfortunately, existing efforts are often unaware that long-range dependency modeling has limitations in highlighting subtle lesion regions. To overcome this limitation, we propose a practical yet lightweight architectural unit, Pyramid Pixel Context Adaption (PPCA) module, which exploits multi-scale pixel context information to recalibrate pixel position in a pixel-independent manner dynamically. PPCA first applies a well-designed cross-channel pyramid pooling to aggregate multi-scale pixel context information, then eliminates the inconsistency among them by the well-designed pixel normalization, and finally estimates per pixel attention weight via a pixel context integration. By embedding PPCA into a DNN with negligible overhead, the PPCANet is developed for medical image classification. In addition, we introduce supervised contrastive learning to enhance feature representation by exploiting the potential of label information via supervised contrastive loss. The extensive experiments on six medical image datasets show that PPCANet outperforms state-of-the-art attention-based networks and recent deep neural networks. We also provide visual analysis and ablation study to explain the behavior of PPCANet in the decision-making process.
Related papers
- From Pixels to Gigapixels: Bridging Local Inductive Bias and Long-Range Dependencies with Pixel-Mamba [16.19372261506739]
We introduce Pixel-Mamba, a novel deep learning architecture designed to efficiently handle gigapixel WSIs.
Pixel-Mamba incorporates local inductive biases through progressively expanding tokens, akin to convolutional neural networks.
Experiments demonstrate the efficacy of Pixel-Mamba as a powerful and efficient framework for end-to-end WSI analysis.
arXiv Detail & Related papers (2024-12-21T17:45:27Z) - Exploring Multi-view Pixel Contrast for General and Robust Image Forgery Localization [4.8454936010479335]
We propose a Multi-view Pixel-wise Contrastive algorithm (MPC) for image forgery localization.
Specifically, we first pre-train the backbone network with the supervised contrastive loss.
Then the localization head is fine-tuned using the cross-entropy loss, resulting in a better pixel localizer.
arXiv Detail & Related papers (2024-06-19T13:51:52Z) - Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - PCRLv2: A Unified Visual Information Preservation Framework for
Self-supervised Pre-training in Medical Image Analysis [56.63327669853693]
We propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics.
We also address the preservation of scale information, a powerful tool in aiding image understanding.
The proposed unified SSL framework surpasses its self-supervised counterparts on various tasks.
arXiv Detail & Related papers (2023-01-02T17:47:27Z) - Rethinking Unsupervised Neural Superpixel Segmentation [6.123324869194195]
unsupervised learning for superpixel segmentation via CNNs has been studied.
We propose three key elements to improve the efficacy of such networks.
By experimenting with the BSDS500 dataset, we find evidence to the significance of our proposal.
arXiv Detail & Related papers (2022-06-21T09:30:26Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
We propose a pixel-wise sparse graph reasoning (PSGR) module to enhance the modeling of long-range dependencies for COVID-19 infected region segmentation in CT images.
The PSGR module avoids imprecise pixel-to-node projections and preserves the inherent information of each pixel for global reasoning.
The solution has been evaluated against four widely-used segmentation models on three public datasets.
arXiv Detail & Related papers (2021-08-09T04:58:23Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
We propose a novel textbfAssociation textbfImplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids.
Our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
arXiv Detail & Related papers (2021-01-26T10:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.