論文の概要: MAEVI: Motion Aware Event-Based Video Frame Interpolation
- arxiv url: http://arxiv.org/abs/2303.02025v1
- Date: Fri, 3 Mar 2023 15:44:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-06 14:19:41.273754
- Title: MAEVI: Motion Aware Event-Based Video Frame Interpolation
- Title(参考訳): MAEVI:イベントベースのビデオフレーム補間を意識したモーションアウェア
- Authors: Ahmet Akman, Onur Selim K{\i}l{\i}\c{c}, A. Ayd{\i}n Alatan
- Abstract要約: イベントカメラにより、移動領域を正確に決定できるので、適切な損失関数を用いてこれらの領域を強調することで、より優れた映像フレーム品質を実現することができる。
その結果、テストデータセットに対して、ITSNRの顕著な平均的な1.3ドルdBの改善が示された。
- 参考スコア(独自算出の注目度): 8.93294761619288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Utilization of event-based cameras is expected to improve the visual quality
of video frame interpolation solutions. We introduce a learning-based method to
exploit moving region boundaries in a video sequence to increase the overall
interpolation quality.Event cameras allow us to determine moving areas
precisely; and hence, better video frame interpolation quality can be achieved
by emphasizing these regions using an appropriate loss function. The results
show a notable average \textit{PSNR} improvement of $1.3$ dB for the tested
data sets, as well as subjectively more pleasing visual results with less
ghosting and blurry artifacts.
- Abstract(参考訳): イベントベースのカメラの利用は、ビデオフレーム補間ソリューションの視覚的品質を改善することが期待される。
本稿では,映像列内の移動領域境界を利用して全体の補間品質を向上させる学習ベースの手法を提案する。イベントカメラは移動領域を正確に決定できるため,適切な損失関数を用いてこれらの領域を強調することにより,より優れた映像フレーム補間品質を実現することができる。
結果は、テストデータセットに対して1.3ドルdBという、注目すべき平均的な \textit{PSNR} の改善と、ゴーストやぼやけたアーティファクトの少ない視覚的結果の主観的な改善を示している。
関連論文リスト
- CMTA: Cross-Modal Temporal Alignment for Event-guided Video Deblurring [44.30048301161034]
ビデオデブロアリングは、隣接するビデオフレームから情報を集めることで、モーションレッドビデオの復元結果の品質を高めることを目的としている。
1) フレーム内機能拡張は, 単一のぼやけたフレームの露出時間内で動作し, 2) フレーム間時間的特徴アライメントは, 重要な長期時間情報を対象のフレームに収集する。
提案手法は, 合成および実世界のデブロアリングデータセットを用いた広範囲な実験により, 最先端のフレームベースおよびイベントベース動作デブロアリング法より優れていることを示す。
論文 参考訳(メタデータ) (2024-08-27T10:09:17Z) - DaBiT: Depth and Blur informed Transformer for Joint Refocusing and Super-Resolution [4.332534893042983]
多くの現実のシナリオでは、録画されたビデオは偶然の焦点がぼやけている。
本稿では、焦点ずれ(再焦点)とビデオ超解像(VSR)に最適化されたフレームワークを提案する。
我々は、既存のビデオ復元方法よりも1.9dB以上のPSNR性能で、最先端の結果を得る。
論文 参考訳(メタデータ) (2024-07-01T12:22:16Z) - Video Dynamics Prior: An Internal Learning Approach for Robust Video
Enhancements [83.5820690348833]
外部トレーニングデータコーパスを必要としない低レベルの視覚タスクのためのフレームワークを提案する。
提案手法は,コヒーレンス・時間的テストの重み付けと統計内部統計を利用して,破損したシーケンスを最適化することでニューラルモジュールを学習する。
論文 参考訳(メタデータ) (2023-12-13T01:57:11Z) - Joint Video Multi-Frame Interpolation and Deblurring under Unknown
Exposure Time [101.91824315554682]
本研究では,より現実的で挑戦的なタスク – 複数フレームのジョイントビデオと,未知の露光時間下での劣化 – を野心的に目標とする。
我々はまず,入力されたぼやけたフレームから露出認識表現を構築するために,教師付きコントラスト学習の変種を採用する。
次に、プログレッシブ露光適応型畳み込みと動き改善による露出と動きの表現に基づいて、映像再構成ネットワークを構築した。
論文 参考訳(メタデータ) (2023-03-27T09:43:42Z) - Event-Based Frame Interpolation with Ad-hoc Deblurring [68.97825675372354]
本稿では,入力ビデオのアドホックを損なうイベントベースフレームの一般的な手法を提案する。
我々のネットワークは、フレーム上の最先端の手法、単一画像のデブロアリング、および共同作業のデブロアリングを一貫して上回ります。
コードとデータセットは公開されます。
論文 参考訳(メタデータ) (2023-01-12T18:19:00Z) - Towards Interpretable Video Super-Resolution via Alternating
Optimization [115.85296325037565]
低フレームのぼかしビデオから高フレームの高解像度のシャープビデオを生成することを目的とした実時間ビデオ超解法(STVSR)問題について検討する。
本稿では,モデルベースと学習ベースの両方の手法を用いて,解釈可能なSTVSRフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-21T21:34:05Z) - Video Frame Interpolation without Temporal Priors [91.04877640089053]
ビデオフレームは、既存の中間フレームをビデオシーケンスで合成することを目的としている。
フレーム/秒(FPS)やフレーム露光時間といったビデオの時間的先行は、異なるカメラセンサーによって異なる場合がある。
我々は、より良い合成結果を得るために、新しい光フロー改善戦略を考案する。
論文 参考訳(メタデータ) (2021-12-02T12:13:56Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
本稿では,映像から鮮明なフレームをエンドツーエンドに切り離し,補間し,外挿する新しい枠組みを提案する。
予測フレーム間の時間的コヒーレンスを確保し,潜在的な時間的あいまいさに対処するために,単純で効果的なフローベースルールを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:18:25Z) - FineNet: Frame Interpolation and Enhancement for Face Video Deblurring [18.49184807837449]
この作品の目的は、顔のビデオを破壊することです。
本稿では,(1)ぼやけたフレームの強化,(2)ぼやけたフレームを欠落した値として扱い,目的によって見積もる方法を提案する。
3つの実および合成ビデオデータセットを用いた実験により,本手法が従来の最先端手法よりも定量的および質的結果において大きな差を示した。
論文 参考訳(メタデータ) (2021-03-01T09:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。