論文の概要: Physics-Informed Deep Learning For Traffic State Estimation: A Survey
and the Outlook
- arxiv url: http://arxiv.org/abs/2303.02063v2
- Date: Sat, 1 Jul 2023 18:59:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-04 14:23:36.921837
- Title: Physics-Informed Deep Learning For Traffic State Estimation: A Survey
and the Outlook
- Title(参考訳): 交通状態推定のための物理インフォームド深層学習--調査と展望
- Authors: Xuan Di, Rongye Shi, Zhaobin Mo, Yongjie Fu
- Abstract要約: 物理インフォームド・ディープ・ラーニング(PIDL)は物理モデルとディープ・ニューラル・ネットワーク(DNN)をハイブリッド化するパラダイムである
PIDLを様々な領域や問題に適用する上で重要な課題のひとつは、物理とDNNを統合する計算グラフの設計にある。
本稿では、PIDL計算グラフの様々なアーキテクチャ設計と、これらの構造が交通状態推定(TSE)にどのようにカスタマイズされるかについて述べる。
- 参考スコア(独自算出の注目度): 7.656272344163666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For its robust predictive power (compared to pure physics-based models) and
sample-efficient training (compared to pure deep learning models),
physics-informed deep learning (PIDL), a paradigm hybridizing physics-based
models and deep neural networks (DNN), has been booming in science and
engineering fields. One key challenge of applying PIDL to various domains and
problems lies in the design of a computational graph that integrates physics
and DNNs. In other words, how physics are encoded into DNNs and how the physics
and data components are represented. In this paper, we provide a variety of
architecture designs of PIDL computational graphs and how these structures are
customized to traffic state estimation (TSE), a central problem in
transportation engineering. When observation data, problem type, and goal vary,
we demonstrate potential architectures of PIDL computational graphs and compare
these variants using the same real-world dataset.
- Abstract(参考訳): その堅牢な予測能力(純粋な物理ベースのモデルに比較)とサンプル効率のよいトレーニング(純粋なディープラーニングモデルに比較)のために、物理ベースのモデルとディープニューラルネットワーク(dnn)をハイブリッド化するパラダイムである、 physics-informed deep learning(pidl)が科学と工学の分野で急成長している。
PIDLを様々な領域や問題に適用する上で重要な課題のひとつは、物理とDNNを統合する計算グラフの設計にある。
言い換えれば、物理がどのようにDNNにエンコードされ、物理とデータコンポーネントがどのように表現されるかである。
本稿では,pidl計算グラフの多種多様なアーキテクチャ設計と,輸送工学の中心的問題である交通状態推定(traffic state estimation, tse)へのカスタマイズについて述べる。
観測データ,問題タイプ,目標が変化すると,PIDL計算グラフの潜在的なアーキテクチャを実証し,これらを実世界のデータセットを用いて比較する。
関連論文リスト
- Physics-Encoded Graph Neural Networks for Deformation Prediction under
Contact [87.69278096528156]
ロボット工学では、触覚相互作用における物体の変形を理解することが不可欠である。
本稿では,物理符号化グラフニューラルネットワーク(GNN)を用いた予測手法を提案する。
コードとデータセットを公開して、ロボットシミュレーションと把握の研究を進めました。
論文 参考訳(メタデータ) (2024-02-05T19:21:52Z) - Numerical analysis of physics-informed neural networks and related
models in physics-informed machine learning [18.1180892910779]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式の前方および逆問題の数値シミュレーションのアルゴリズムとして近年広く普及している。
PINNによるPDEの近似における誤差の様々な成分の分析を効果的に行うことができる統一的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-01-30T10:43:27Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
物理原理とデータ駆動モデルの統合の欠如は、この分野の開発を制限する重要な理由である。
本稿では,交通流力学の物理機構を深層ニューラルネットワークの枠組みに組み込む,時空間微分方程式ネットワーク(STDEN)という物理誘導型ディープラーニングモデルを提案する。
北京の3つの実世界の交通データセットの実験では、我々のモデルは最先端のベースラインをかなり上回っている。
論文 参考訳(メタデータ) (2022-09-01T04:58:18Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Scalable algorithms for physics-informed neural and graph networks [0.6882042556551611]
物理インフォームド機械学習(PIML)は、複雑な物理的および生物学的システムをシミュレートするための有望な新しいアプローチとして登場した。
PIMLでは、物理法則を適用し、時空領域のランダムな点で評価することで得られる追加情報から、そのようなネットワークを訓練することができる。
本稿では、主にフィードフォワードニューラルネットワークと自動微分に基づく物理情報ニューラルネットワーク(PINN)を用いて、物理を機械学習に組み込む一般的なトレンドについて概説する。
論文 参考訳(メタデータ) (2022-05-16T15:46:11Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - Physically Explainable CNN for SAR Image Classification [59.63879146724284]
本稿では,SAR画像分類のための新しい物理誘導型ニューラルネットワークを提案する。
提案フレームワークは,(1)既存の説明可能なモデルを用いて物理誘導信号を生成すること,(2)物理誘導ネットワークを用いた物理認識特徴を学習すること,(3)従来の分類深層学習モデルに適応的に物理認識特徴を注入すること,の3つの部分からなる。
実験の結果,提案手法はデータ駆動型CNNと比較して,分類性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2021-10-27T03:30:18Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
スケーラブルで表現力のあるグラフニューラルネットワークモデルであるForceNetを開発し、原子力を近似します。
提案したForceNetは、最先端の物理ベースのGNNよりも正確に原子力を予測することができる。
論文 参考訳(メタデータ) (2021-03-02T03:09:06Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - A Physics-Informed Deep Learning Paradigm for Car-Following Models [3.093890460224435]
物理モデルによるニューラルネットワークに基づくカーフォローモデルの開発を行っています。
2種類のPIDL-CFM問題について検討し,その1つは加速のみを予測し,もう1つは加速のみを予測し,モデルパラメータを発見する。
その結果,無力者よりも物理によって学習されるニューラルネットの性能が向上した。
論文 参考訳(メタデータ) (2020-12-24T18:04:08Z) - Thermodynamics-based Artificial Neural Networks for constitutive
modeling [0.0]
本稿では,物質点レベルでのひずみ速度独立過程のモデリングのための,データ駆動型物理ベースニューラルネットワークの新たなクラスを提案する。
熱力学の2つの基本原理は、自動微分を利用してネットワークのアーキテクチャに符号化される。
本研究では, 伸縮硬化および軟化ひずみを有するエラスト塑性材料をモデル化するためのTANNの広範囲な適用性を示す。
論文 参考訳(メタデータ) (2020-05-25T15:56:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。