Attention-based convolutional neural network for perfusion T2-weighted
MR images preprocessing
- URL: http://arxiv.org/abs/2303.02518v1
- Date: Sat, 4 Mar 2023 22:40:59 GMT
- Title: Attention-based convolutional neural network for perfusion T2-weighted
MR images preprocessing
- Authors: Svitlana Alkhimova, Oleksii Diumin
- Abstract summary: We propose different integration strategies for the spatial and channel squeeze and excitation attention mechanism into the baseline U-Net+ResNet neural network architecture.
We investigate the performance of skull-stripping in T2-star weighted MR images with abnormal brain anatomy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate skull-stripping is crucial preprocessing in dynamic susceptibility
contrast-enhanced perfusion magnetic resonance data analysis. The presence of
non-brain tissues impacts the perfusion parameters assessment. In this study,
we propose different integration strategies for the spatial and channel squeeze
and excitation attention mechanism into the baseline U-Net+ResNet neural
network architecture to provide automatic skull-striping i.e., Standard scSE,
scSE-PRE, scSE-POST, and scSE Identity strategies of plugging of scSE block
into the ResNet backbone. We comprehensively investigate the performance of
skull-stripping in T2-star weighted MR images with abnormal brain anatomy. The
comparison that utilizing any of the proposed strategies provides the
robustness of skull-stripping. However, the scSE-POST integration strategy
provides the best result with an average Dice Coefficient of 0.9810.
Related papers
- Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Joint MR sequence optimization beats pure neural network approaches for
spin-echo MRI super-resolution [44.52688267348063]
Current MRI super-resolution (SR) methods only use existing contrasts acquired from typical clinical sequences as input for the neural network (NN)
We propose a known-operator learning approach to perform an end-to-end optimization of MR sequence and neural net-work parameters for SR-TSE.
arXiv Detail & Related papers (2023-05-12T14:40:25Z) - Two-stage MR Image Segmentation Method for Brain Tumors based on
Attention Mechanism [27.08977505280394]
A coordination-spatial attention generation adversarial network (CASP-GAN) based on the cycle-consistent generative adversarial network (CycleGAN) is proposed.
The performance of the generator is optimized by introducing the Coordinate Attention (CA) module and the Spatial Attention (SA) module.
The ability to extract the structure information and the detailed information of the original medical image can help generate the desired image with higher quality.
arXiv Detail & Related papers (2023-04-17T08:34:41Z) - Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with
Graph Neural Networks [28.460737693330245]
We propose TBDS, an end-to-end framework based on underlineTask-aware underlineBrain connectivity underlineDAG for fMRI analysis.
The key component of TBDS is the brain network generator which adopts a DAG learning approach to transform the raw time-series into task-aware brain connectivities.
Comprehensive experiments on two fMRI datasets demonstrate the efficacy of TBDS.
arXiv Detail & Related papers (2022-11-01T03:59:54Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Category Guided Attention Network for Brain Tumor Segmentation in MRI [6.685945448824158]
We propose a novel segmentation network named Category Guided Attention U-Net (CGA U-Net)
In this model, we design a Supervised Attention Module (SAM) based on the attention mechanism, which can capture more accurate and stable long-range dependency in feature maps without introducing much computational cost.
Experimental results on the BraTS 2019 datasets show that the proposed method outperformers the state-of-the-art algorithms in both segmentation performance and computational complexity.
arXiv Detail & Related papers (2022-03-29T09:22:29Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
We propose a symmetry enhanced attention network (SEAN) for acute ischemic infarct segmentation.
Our proposed network automatically transforms an input CT image into the standard space where the brain tissue is bilaterally symmetric.
The proposed SEAN outperforms some symmetry-based state-of-the-art methods in terms of both dice coefficient and infarct localization.
arXiv Detail & Related papers (2021-10-11T07:13:26Z) - Complex-valued Federated Learning with Differential Privacy and MRI Applications [51.34714485616763]
We introduce the complex-valued Gaussian mechanism, whose behaviour we characterise in terms of $f$-DP, $(varepsilon, delta)$-DP and R'enyi-DP.
We present novel complex-valued neural network primitives compatible with DP.
Experimentally, we showcase a proof-of-concept by training federated complex-valued neural networks with DP on a real-world task.
arXiv Detail & Related papers (2021-10-07T14:03:00Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.