論文の概要: Adaptive quantum error mitigation using pulse-based inverse evolutions
- arxiv url: http://arxiv.org/abs/2303.05001v1
- Date: Thu, 9 Mar 2023 02:50:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-10 16:23:08.499432
- Title: Adaptive quantum error mitigation using pulse-based inverse evolutions
- Title(参考訳): パルスベース逆進化を用いた適応量子誤差緩和
- Authors: Ivan Henao, Jader P. Santos, and Raam Uzdin
- Abstract要約: 我々は、ターゲット装置の雑音強度に適応し、中等度から強靭なノイズを処理できるKIKと呼ばれるQEM法を開発した。
この手法の実装は実験的に単純であり、必要な数の量子回路はシステムのサイズに依存しない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error mitigation (QEM) comprises methods for suppressing noise in
quantum computers without involving the presently impractical hardware overhead
associated with quantum error correction codes. Unfortunately, current QEM
techniques are limited to weak noise or lack scalability. We develop a QEM
method called KIK that adapts to the noise strength of the target device and
therefore can handle moderate-to-strong noise. The implementation of the method
is experimentally simple, and the required number of quantum circuits is
independent of the size of the system. Furthermore, we show that it can be
integrated with randomized compiling for handling both incoherent and coherent
noise. We demonstrate our findings in the IBM quantum computers and through
numerical simulations.
- Abstract(参考訳): 量子エラー緩和(quantum error mitigation, qem)は、量子エラー訂正符号に関連する現在の非実用的ハードウェアオーバヘッドを伴わずに量子コンピュータのノイズを抑制する手法である。
残念ながら、現在のQEM技術は、弱いノイズやスケーラビリティに制限されている。
我々は、ターゲット装置の雑音強度に適応し、中等度から強靭なノイズを処理できるKIKと呼ばれるQEM法を開発した。
この手法の実装は実験的に単純であり、必要な数の量子回路はシステムのサイズに依存しない。
さらに,非一貫性雑音とコヒーレント雑音の両方を扱うために,ランダム化コンパイルと統合できることを示す。
我々は、IBM量子コンピュータと数値シミュレーションを用いて、我々の研究結果を実証した。
関連論文リスト
- Unconditionally decoherence-free quantum error mitigation by density matrix vectorization [4.2630430280861376]
密度行列のベクトル化に基づく量子誤差緩和の新しいパラダイムを提案する。
提案手法は,情報符号化の方法を直接変更し,ノイズのない純状態に雑音の多い量子状態の密度行列をマッピングする。
我々のプロトコルは、ノイズモデルに関する知識、ノイズ強度を調整する能力、複雑な制御ユニタリのためのアンシラキュービットを必要としない。
論文 参考訳(メタデータ) (2024-05-13T09:55:05Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
本稿では,Lindblad-like quantum tomography (L$ell$QT) を量子情報プロセッサにおける時間相関ノイズの量子的特徴付け手法として紹介する。
単一量子ビットの強調力学について、L$ell$QT を詳細に論じ、量子進化の複数のスナップショットを可能性関数に含めることの重要性を正確に理解することができる。
論文 参考訳(メタデータ) (2024-03-28T19:29:12Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Superposed Quantum Error Mitigation [1.732837834702512]
ノイズや不完全性の影響を克服することは、量子コンピューティングにおける大きな課題である。
本稿では,利害関係と一部の補助状態の重ね合わせにおいて,所望のユニタリ計算を適用するアプローチを提案する。
我々は、IBM Quantum Platform上で、同じ動作の並列適用が大きなノイズ軽減につながることを実証した。
論文 参考訳(メタデータ) (2023-04-17T18:01:01Z) - Noise-robust ground state energy estimates from deep quantum circuits [0.0]
量子アルゴリズムにおいて、基礎となるエネルギー推定が不整合ノイズを明示的に除去する方法を示す。
我々はIBM Quantumハードウェア上で量子磁性のモデルとしてQCMを実装した。
QCMはVQEが完全に失敗する極めて高いエラー堅牢性を維持している。
論文 参考訳(メタデータ) (2022-11-16T09:12:55Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
量子情報処理では、量子演算はしばしば古典的なデータをもたらす測定とともに処理される。
非単位の動的プロセスは、一般的な量子チャネルの記述が時間進化を記述するのに失敗するシステムで起こりうる。
量子測定は古典的な出力と測定後の量子状態の両方を計測するいわゆる量子機器によって正しく扱われる。
論文 参考訳(メタデータ) (2021-10-13T18:00:13Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
我々はQuTiPの量子情報処理パッケージであるqutip-qipに新しいツールを導入する。
これらのツールはパルスレベルで量子回路をシミュレートし、QuTiPの量子力学解法と制御最適化機能を活用する。
シミュレーションプロセッサ上で量子回路がどのようにコンパイルされ、制御パルスがターゲットハミルトニアンに作用するかを示す。
論文 参考訳(メタデータ) (2021-05-20T17:06:52Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
ベイズ推論の実行には、ELF(Engineered chance function)が用いられる。
物理ハードウェアがノイズの多い量子コンピュータの仕組みから遷移するにつれて,ELF形式がサンプリングにおける情報ゲイン率をいかに向上させるかを示す。
この技術は、化学、材料、ファイナンスなどを含む多くの量子アルゴリズムの中心的なコンポーネントを高速化する。
論文 参考訳(メタデータ) (2020-06-16T17:46:18Z) - Mitigating realistic noise in practical noisy intermediate-scale quantum
devices [0.5872014229110214]
量子エラー緩和(QEM)は、ノイズの多い中間スケール量子(NISQ)デバイスに不可欠である。
従来のQEM方式の多くは、各ゲートの前後にノイズが現れる離散ゲートベース回路を前提としている。
新たなQEM法により効果的に抑制できることを示す。
論文 参考訳(メタデータ) (2020-01-14T16:51:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。