Non-equilibrium quantum thermodynamics of a particle trapped in a
controllable time-varying potential
- URL: http://arxiv.org/abs/2303.05289v1
- Date: Thu, 9 Mar 2023 14:36:46 GMT
- Title: Non-equilibrium quantum thermodynamics of a particle trapped in a
controllable time-varying potential
- Authors: Qiongyuan Wu and Matteo Carlesso
- Abstract summary: Non-equilibrium thermodynamics can provide strong advantages when compared to more standard equilibrium situations.
We consider two different problems: 1) the dynamics of a levitated nanoparticles undergoing the transition from an harmonic to a double-well potential; 2) the transfer of a quantum state across a double-well potential through classical and quantum protocols.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-equilibrium thermodynamics can provide strong advantages when compared to
more standard equilibrium situations. Here, we present a general framework to
study its application to concrete problems, which is valid also beyond the
assumption of a Gaussian dynamics. We consider two different problems: 1) the
dynamics of a levitated nanoparticle undergoing the transition from an harmonic
to a double-well potential; 2) the transfer of a quantum state across a
double-well potential through classical and quantum protocols. In both cases,
we assume that the system undergoes to decoherence and thermalisation. In case
1), we construct a numerical approach to the problem and study the
non-equilibrium thermodynamics of the system. In case 2), we introduce a new
figure of merit to quantify the efficiency of a state-transfer protocol and
apply it to quantum and classical versions of such protocols.
Related papers
- Quasiprobabilities in quantum thermodynamics and many-body systems: A tutorial [0.0]
We present the definition, interpretation and properties of the main quasiprobabilities known in the literature.
We illustrate the use of quasiprobabilities in quantum thermodynamics to describe the quantum statistics of work and heat.
arXiv Detail & Related papers (2024-03-25T19:22:57Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Quantum kinetics of quenched two-dimensional Bose superfluids [0.0]
We study theoretically the non-equilibrium dynamics of a two-dimensional (2D) uniform Bose superfluid following a quantum quench.
We derive quantum kinetic equations for the low-energy phononic excitations of the system and characterize both their normal and anomalous momentum distributions.
arXiv Detail & Related papers (2023-02-21T15:39:49Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Non-equilibrium quantum thermodynamics of a particle trapped in a
controllable time-varying potential [0.0]
We study the dynamics of a levitated nanoparticles undergoing the transition from an harmonic potential to a double-well.
We investigate the dynamics with the Wehrl entropy production and its rates.
The effects and the competitions of the unitary and the dissipative parts onto the system are demonstrated.
arXiv Detail & Related papers (2021-10-29T16:25:25Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Second law of thermodynamics for relativistic fluids formulated with
relative entropy [0.0]
The second law of thermodynamics is discussed and reformulated from a quantum information theoretic perspective.
We discuss this first for generic quantum systems in contact with a thermal bath and then turn to a formulation suitable for the description of local dynamics.
A local version of the second law similar to the one used in relativistic fluid dynamics can be formulated with relative entropy or even relative entanglement entropy in a space-time region bounded by two light cones.
arXiv Detail & Related papers (2020-08-06T15:19:06Z) - Heat flow and noncommutative quantum mechanics in phase-space [0.0]
We show that by controlling the new constants introduced in the quantum theory, due to a deformed Heisenberg-Weyl algebra, the heat flow from the hot to the cold system may be enhanced.
We also give a brief discussion on the robustness of the second law of thermodynamics in the context of noncommutative quantum mechanics.
arXiv Detail & Related papers (2019-12-26T15:28:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.