Quasiprobabilities in quantum thermodynamics and many-body systems: A tutorial
- URL: http://arxiv.org/abs/2403.17138v1
- Date: Mon, 25 Mar 2024 19:22:57 GMT
- Title: Quasiprobabilities in quantum thermodynamics and many-body systems: A tutorial
- Authors: Stefano Gherardini, Gabriele De Chiara,
- Abstract summary: We present the definition, interpretation and properties of the main quasiprobabilities known in the literature.
We illustrate the use of quasiprobabilities in quantum thermodynamics to describe the quantum statistics of work and heat.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quasiprobabilities are mathematical quantities describing the statistics of measurement outcomes evaluated at two or more times, which incorporate the incompatibility of the measurement observables and the state of the measured quantum system. In this tutorial, we present the definition, interpretation and properties of the main quasiprobabilities known in the literature. We also discuss techniques to experimentally access a quasiprobability distribution, ranging from the weak two-point measurement scheme, to a Ramsey-like interferometric scheme and procedures assisted by an external detector. Once defined the fundamental concepts following the standpoint of joint measurability in quantum mechanics, we illustrate the use of quasiprobabilities in quantum thermodynamics to describe the quantum statistics of work and heat, and to explain anomalies in the energy exchanges entailed by a given thermodynamic transformation. On the one hand, in work protocols, we show how absorbed energy can be converted to extractable work and vice versa due to Hamiltonian incompatibility at distinct times. On the other hand, in exchange processes between two quantum systems initially at different temperatures, we explain how quantum correlations in their initial state may induce cold-to-hot energy exchanges, which are unnatural between any pair of equilibrium non-driven systems. We conclude the tutorial by giving simple examples where quasiprobabilities are applied to many-body systems: scrambling of quantum information, sensitivity to local perturbations, quantum work statistics in the quenched dynamics of models that can be mapped onto systems of free fermions, for instance the Ising model with a transverse field. Throughout the tutorial, we meticulously present derivations of essential concepts alongside straightforward examples, aiming to enhance comprehension and facilitate learning.
Related papers
- Daemonic ergotropy in continuously-monitored open quantum batteries [0.0]
daemonic ergotropy is introduced to properly describe and quantify this work extraction enhancement in the quantum regime.
We show that the corresponding daemonic ergotropy takes values between the ergotropy and the energy of the corresponding unconditional state.
The upper bound is achieved by assuming an initial pure state and a perfectly efficient projective measurement on the environment.
arXiv Detail & Related papers (2023-02-23T19:04:47Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Energy fluctuation relations and repeated quantum measurements [4.724825031148412]
We discuss the statistical description in non-equilibrium regimes of energy fluctuations originated by the interaction between a quantum system and a measurement apparatus.
To properly quantify the information about energy fluctuations, both the exchanged heat probability density function and the corresponding characteristic function are derived and interpreted.
arXiv Detail & Related papers (2022-02-05T16:20:13Z) - Quasi-probabilities of work and heat in an open quantum system [0.0]
We discuss an approach to determine averages of the work, dissipated heat and variation of internal energy of an open quantum system driven by an external classical field.
We obtain a quasi-characteristic function and a quasi-probability density function for the corresponding observables.
We use this feature to show that in the limit of strong dissipation, the quantum features vanish and interpret this as the emergence of the classical limit of the energy exchange process.
arXiv Detail & Related papers (2021-10-12T06:55:39Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Non-destructively probing the thermodynamics of quantum systems with
qumodes [0.6144680854063939]
In quantum systems there is often a destruction of the system itself due to the means of measurement.
One approach to circumventing this is the use of ancillary probes that couple to the system under investigation.
We highlight means by which continuous variable quantum modes (qumodes) can be employed to probe the thermodynamics of quantum systems in and out of equilibrium.
arXiv Detail & Related papers (2017-07-13T17:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.