Absorbing State Phase Transition with Clifford Circuits
- URL: http://arxiv.org/abs/2303.05317v2
- Date: Mon, 1 Jul 2024 14:41:40 GMT
- Title: Absorbing State Phase Transition with Clifford Circuits
- Authors: Nastasia Makki, Nicolai Lang, Hans Peter Büchler,
- Abstract summary: We study the absorbing state phase transition of a 1D chain of qubits undergoing a contact process.
We adopt a discrete-time quantum model with states that can be described in the stabilizer formalism.
We extend our analysis to a non-Clifford circuit model, where a tentative scaling analysis in small systems reveals critical exponents.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The role of quantum fluctuations in modifying the critical behavior of non-equilibrium phase transitions is a fundamental but unsolved question. In this study, we examine the absorbing state phase transition of a 1D chain of qubits undergoing a contact process that involves both coherent and classical dynamics. We adopt a discrete-time quantum model with states that can be described in the stabilizer formalism, and therefore allows for an efficient simulation of large system sizes. The extracted critical exponents indicate that the absorbing state phase transition of this Clifford circuit model belongs to the directed percolation universality class. This suggests that the inclusion of quantum fluctuations does not necessarily alter the critical behavior of non-equilibrium phase transitions of purely classical systems. Finally, we extend our analysis to a non-Clifford circuit model, where a tentative scaling analysis in small systems reveals critical exponents that are also consistent with the directed percolation universality class.
Related papers
- Signatures of Quantum Phase Transitions in Driven Dissipative Spin Chains [0.0]
We show that a driven-dissipative quantum spin chain exhibits a peculiar sensitivity to the ground-state quantum phase transition.
We develop a versatile analytical approach that becomes exact with vanishing dissipation.
arXiv Detail & Related papers (2024-05-30T22:25:15Z) - Dynamics of a Nonequilibrium Discontinuous Quantum Phase Transition in a
Spinor Bose-Einstein Condensate [0.0]
We show that critical scaling behavior in a first-order quantum phase transition can be understood from generic properties.
We predict the onset of the decay of the metastable state on short times scales and the number of resulting phase-separated ferromagnetic domains at longer times.
arXiv Detail & Related papers (2023-12-27T12:39:23Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Quantum behavior of a superconducting Duffing oscillator at the
dissipative phase transition [0.817918559522319]
We reconcile the classical and quantum descriptions in a unified picture of quantum metastability.
By engineering the lifetime of the metastable states sufficiently large, we observe a first-order dissipative phase transition.
Results reveal a smooth quantum evolution behind a sudden dissipative transition.
arXiv Detail & Related papers (2022-06-13T17:35:27Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Peratic Phase Transition by Bulk-to-Surface Response [26.49714398456829]
We show a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems.
Our prediction of peratic phase transition has direct consequences in quantum simulation platforms such as Rydberg atoms and superconducting qubits.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Tuning the universality class of phase transitions by feedback: Open
quantum systems beyond dissipation [0.0]
We show that feedback allows tuning the universality class of phase transitions via modifying its critical exponent.
The tunability of quantum fluctuations near the critical point by the feedbacks of nontrivial shapes is explained.
arXiv Detail & Related papers (2021-07-06T18:28:11Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.