論文の概要: Simulation-based, Finite-sample Inference for Privatized Data
- arxiv url: http://arxiv.org/abs/2303.05328v5
- Date: Mon, 30 Sep 2024 13:29:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:57:18.774405
- Title: Simulation-based, Finite-sample Inference for Privatized Data
- Title(参考訳): プリバスト化データに対するシミュレーションに基づく有限サンプル推論
- Authors: Jordan Awan, Zhanyu Wang,
- Abstract要約: 本稿では,統計的に有効な信頼区間と仮説テストを生成するためのシミュレーションベースの"repro sample"手法を提案する。
本手法は様々な個人推論問題に適用可能であることを示す。
- 参考スコア(独自算出の注目度): 14.218697973204065
- License:
- Abstract: Privacy protection methods, such as differentially private mechanisms, introduce noise into resulting statistics which often produces complex and intractable sampling distributions. In this paper, we propose a simulation-based "repro sample" approach to produce statistically valid confidence intervals and hypothesis tests, which builds on the work of Xie and Wang (2022). We show that this methodology is applicable to a wide variety of private inference problems, appropriately accounts for biases introduced by privacy mechanisms (such as by clamping), and improves over other state-of-the-art inference methods such as the parametric bootstrap in terms of the coverage and type I error of the private inference. We also develop significant improvements and extensions for the repro sample methodology for general models (not necessarily related to privacy), including 1) modifying the procedure to ensure guaranteed coverage and type I errors, even accounting for Monte Carlo error, and 2) proposing efficient numerical algorithms to implement the confidence intervals and $p$-values.
- Abstract(参考訳): 差分的にプライベートなメカニズムのようなプライバシ保護手法は、しばしば複雑で難解なサンプリング分布を生成する統計結果にノイズを導入する。
本稿では,Xie と Wang (2022) の業績に基づいて,統計的に有効な信頼区間と仮説テストを生成するためのシミュレーションベースの "repro sample" 手法を提案する。
本手法は,プライバシ機構によって生じるバイアス(クランプなど)を適切に考慮し,パラメトリックブートストラップなどの最先端の推論手法を,プライベート推論のカバレッジやタイプIエラーの観点から改善し,様々なプライベート推論問題に適用可能であることを示す。
また、一般モデル(必ずしもプライバシに関係しない)のreproサンプル方法論の大幅な改善と拡張も進めている。
1) モンテカルロのエラーも考慮し、保証されたカバレッジとタイプIのエラーを保証する手順を変更する。
2) 信頼区間と$p$-値を実装するための効率的な数値アルゴリズムを提案する。
関連論文リスト
- Conditionally valid Probabilistic Conformal Prediction [57.80927226809277]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを作成する手法を開発した。
提案手法の有効性を広範囲なシミュレーションにより実証し,条件付きカバレッジで既存手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
プライバシ保護されたデータセットからのシミュレーションに基づく推論手法を提案する。
本稿では,感染性疾患モデルと通常の線形回帰モデルに基づく個別時系列データについて述べる。
論文 参考訳(メタデータ) (2023-10-19T14:34:17Z) - Differentially Private Linear Regression with Linked Data [3.9325957466009203]
コンピュータ科学の数学的概念である差分プライバシーは、堅牢なプライバシー保証を提供する上昇するツールである。
最近の研究は、個々の統計および機械学習タスクの微分プライベートバージョンの開発に焦点を当てている。
相関データを用いた線形回帰のための2つの微分プライベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-01T21:00:19Z) - Differentially Private Statistical Inference through $\beta$-Divergence
One Posterior Sampling [2.8544822698499255]
本稿では,モデルとデータ生成プロセス間の$beta$-divergenceの最小化を目標とした,一般化後部からの後部サンプリング手法を提案する。
これにより、基礎となるモデルの変更を必要とせずに、一般的に適用可能なプライベートな推定が可能になる。
我々は、$beta$D-Bayesが同一のプライバシー保証に対してより正確な推測を行うことを示す。
論文 参考訳(メタデータ) (2023-07-11T12:00:15Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
プライベート機械学習では、既存の監査メカニズムは厳格である。
彼らは不確実な最悪の仮定の下でのみ厳密な見積もりを行う。
我々は、自然(逆向きではない)データセットの厳密なプライバシー推定を得られる改善された監査スキームを設計する。
論文 参考訳(メタデータ) (2023-02-15T21:40:33Z) - A Prototype-Oriented Framework for Unsupervised Domain Adaptation [52.25537670028037]
メモリと計算効率のよい確率的フレームワークを提供し、クラスプロトタイプを抽出し、ターゲットとなる特徴をそれらと整合させる。
本稿では,単一ソース,マルチソース,クラス不均衡,ソースプライベートドメイン適応など,幅広いシナリオにおいて,本手法の汎用性を実証する。
論文 参考訳(メタデータ) (2021-10-22T19:23:22Z) - Non-parametric Differentially Private Confidence Intervals for the
Median [3.205141100055992]
本稿では,中央値に対する有意な個人的信頼区間を計算するためのいくつかの戦略を提案し,評価する。
また、サンプリングからのエラーと出力の保護からのエラーという2つの不確実性源に対処することが、この不確実性を逐次的に組み込んだ単純なアプローチよりも望ましいことを示す。
論文 参考訳(メタデータ) (2021-06-18T19:45:37Z) - Differentially private inference via noisy optimization [3.015622397986615]
本研究では, 雑音勾配降下法や雑音の強いニュートン法と併用して, 最適な個人推定値が得られることを示す。
シミュレーションにおける小サンプル実験性能の向上につながるバイアス補正の有効性を実証する。
論文 参考訳(メタデータ) (2021-03-19T19:55:55Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。