論文の概要: Optimizing quantum noise-induced reservoir computing for nonlinear and
chaotic time series prediction
- arxiv url: http://arxiv.org/abs/2303.05488v2
- Date: Thu, 9 Nov 2023 12:19:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 18:35:12.523488
- Title: Optimizing quantum noise-induced reservoir computing for nonlinear and
chaotic time series prediction
- Title(参考訳): 非線形およびカオス時系列予測のための量子ノイズ誘起貯水池計算の最適化
- Authors: Daniel Fry, Amol Deshmukh, Samuel Yen-Chi Chen, Vladimir Rastunkov,
Vanio Markov
- Abstract要約: 我々は, 量子雑音による貯水池を改良し, 貯水池の騒音を表現的非線形信号を生成するための資源として利用する。
その結果,1つのノイズモデルと少ないメモリ容量で,非線形ベンチマークにおいて優れたシミュレーション結果が得られた。
- 参考スコア(独自算出の注目度): 2.5427629797261297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum reservoir computing is strongly emerging for sequential and time
series data prediction in quantum machine learning. We make advancements to the
quantum noise-induced reservoir, in which reservoir noise is used as a resource
to generate expressive, nonlinear signals that are efficiently learned with a
single linear output layer. We address the need for quantum reservoir tuning
with a novel and generally applicable approach to quantum circuit
parameterization, in which tunable noise models are programmed to the quantum
reservoir circuit to be fully controlled for effective optimization. Our
systematic approach also involves reductions in quantum reservoir circuits in
the number of qubits and entanglement scheme complexity. We show that with only
a single noise model and small memory capacities, excellent simulation results
were obtained on nonlinear benchmarks that include the Mackey-Glass system for
100 steps ahead in the challenging chaotic regime.
- Abstract(参考訳): 量子リザーバコンピューティングは、量子機械学習におけるシーケンシャルおよび時系列データ予測のために強く出現している。
単一の線形出力層で効率的に学習される表現豊かで非線形な信号を生成するために, 貯留層ノイズを資源として用いる量子ノイズ型貯留層を進化させる。
そこで本研究では,量子回路のパラメータ化に広く適用可能な新しい手法を用いて,量子貯留層チューニングの必要性に対処し,量子貯留層回路に可変ノイズモデルをプログラムし,効率的な最適化のために完全に制御する。
系統的アプローチでは,量子リザーバ回路の量子ビット数の減少や絡み合いスキームの複雑さも含む。
一つのノイズモデルと少ないメモリ容量しか持たないため,100ステップ先までMackey-Glassシステムを含む非線形ベンチマークで優れたシミュレーション結果が得られた。
関連論文リスト
- Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
本稿では、量子計測の古典的後処理を通じてメモリを実装するハイブリッド量子古典的アプローチを提案する。
我々は、完全に連結されたIsingモデルとRydberg原子配列の2つの物理プラットフォーム上でモデルをテストした。
論文 参考訳(メタデータ) (2024-09-15T22:44:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quadratic Advantage with Quantum Randomized Smoothing Applied to Time-Series Analysis [0.0]
本稿では、量子ランダム化平滑化の解析を行い、データエンコーディングと摂動モデリングのアプローチをマッチングして有意義な堅牢性証明を実現する方法について述べる。
拘束されたハミング重量の摂動がここで適切な雑音分布であることを示し、量子コンピュータ上でどのように構築できるかを明らかにする。
これにより、量子コンピュータは、古典的手法の範囲を超えて、より複雑なタスクにランダム化されたスムーシングを効率的にスケールすることができる。
論文 参考訳(メタデータ) (2024-07-25T13:15:16Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Hybrid quantum gap estimation algorithm using a filtered time series [0.0]
我々は、古典的な後処理、すなわち、オフライン時系列の長時間フィルタリングが、量子時間進化に必要な回路深さを指数関数的に改善することを証明する。
本手法をハイブリッド量子古典アルゴリズムの構築に適用し,エネルギーギャップを推定する。
我々の発見は、短期的にメモリの優位性を提供するために、非バイアス量子シミュレーションのステージを設定した。
論文 参考訳(メタデータ) (2022-12-28T18:59:59Z) - Bayesian Learning of Parameterised Quantum Circuits [0.0]
我々はベイズ後部の近似として古典的最適化の確率論的視点を取り、再定式化する。
ラプラスを用いた最大後点推定に基づく次元縮小戦略について述べる。
量子H1-2コンピュータの実験では、結果として得られる回路は勾配なしで訓練された回路よりも高速でノイズが少ないことが示されている。
論文 参考訳(メタデータ) (2022-06-15T14:20:14Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Temporal Information Processing on Noisy Quantum Computers [3.4180402210147243]
複素散逸型量子力学を利用する量子貯水池計算を提案する。
遠隔アクセスされたクラウドベースの超伝導量子コンピュータに関する実証実験は、小さくノイズの多い量子貯水池が高次非線形時間的タスクに対処できることを実証している。
本研究は, 量子誤り訂正を伴わず, 忠実度を増大させるような, 短期ゲートモデル量子コンピュータの魅力的な時間的処理手法の道筋をたどるものである。
論文 参考訳(メタデータ) (2020-01-26T19:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。