Training, Architecture, and Prior for Deterministic Uncertainty Methods
- URL: http://arxiv.org/abs/2303.05796v2
- Date: Tue, 28 Mar 2023 18:34:38 GMT
- Title: Training, Architecture, and Prior for Deterministic Uncertainty Methods
- Authors: Bertrand Charpentier, Chenxiang Zhang, Stephan G\"unnemann
- Abstract summary: This work investigates important design choices in Deterministic Uncertainty Methods (DUMs)
We show that training schemes decoupling the core architecture and the uncertainty head schemes can significantly improve uncertainty performances.
Contrary to other Bayesian models, we show that the prior defined by DUMs do not have a strong effect on the final performances.
- Score: 33.45069308137142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and efficient uncertainty estimation is crucial to build reliable
Machine Learning (ML) models capable to provide calibrated uncertainty
estimates, generalize and detect Out-Of-Distribution (OOD) datasets. To this
end, Deterministic Uncertainty Methods (DUMs) is a promising model family
capable to perform uncertainty estimation in a single forward pass. This work
investigates important design choices in DUMs: (1) we show that training
schemes decoupling the core architecture and the uncertainty head schemes can
significantly improve uncertainty performances. (2) we demonstrate that the
core architecture expressiveness is crucial for uncertainty performance and
that additional architecture constraints to avoid feature collapse can
deteriorate the trade-off between OOD generalization and detection. (3)
Contrary to other Bayesian models, we show that the prior defined by DUMs do
not have a strong effect on the final performances.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - LoGU: Long-form Generation with Uncertainty Expressions [49.76417603761989]
We introduce the task of Long-form Generation with Uncertainty(LoGU)
We identify two key challenges: Uncertainty Suppression and Uncertainty Misalignment.
Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims.
Experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
arXiv Detail & Related papers (2024-10-18T09:15:35Z) - The BRAVO Semantic Segmentation Challenge Results in UNCV2024 [68.20197719071436]
We define two categories of reliability: (1) semantic reliability, which reflects the model's accuracy and calibration when exposed to various perturbations; and (2) OOD reliability, which measures the model's ability to detect object classes that are unknown during training.
The results reveal interesting insights into the importance of large-scale pre-training and minimal architectural design in developing robust and reliable semantic segmentation models.
arXiv Detail & Related papers (2024-09-23T15:17:30Z) - Error-Driven Uncertainty Aware Training [7.702016079410588]
Error-Driven Uncertainty Aware Training aims to enhance the ability of neural classifiers to estimate their uncertainty correctly.
The EUAT approach operates during the model's training phase by selectively employing two loss functions depending on whether the training examples are correctly or incorrectly predicted.
We evaluate EUAT using diverse neural models and datasets in the image recognition domains considering both non-adversarial and adversarial settings.
arXiv Detail & Related papers (2024-05-02T11:48:14Z) - Discretization-Induced Dirichlet Posterior for Robust Uncertainty
Quantification on Regression [17.49026509916207]
Uncertainty quantification is critical for deploying deep neural networks (DNNs) in real-world applications.
For vision regression tasks, current AuxUE designs are mainly adopted for aleatoric uncertainty estimates.
We propose a generalized AuxUE scheme for more robust uncertainty quantification on regression tasks.
arXiv Detail & Related papers (2023-08-17T15:54:11Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
The intrinsic ill-posedness and ordinal-sensitive nature of monocular depth estimation (MDE) models pose major challenges to the estimation of uncertainty degree.
We propose to model the uncertainty of MDE models from the perspective of the inherent probability distributions.
By simply introducing additional training regularization terms, our model, with surprisingly simple formations and without requiring extra modules or multiple inferences, can provide uncertainty estimations with state-of-the-art reliability.
arXiv Detail & Related papers (2023-07-19T12:11:15Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Model Uncertainty Quantification for Reliable Deep Vision Structural
Health Monitoring [2.5126058470073263]
This paper proposes Bayesian inference for deep vision structural health monitoring models.
Uncertainty can be quantified using the Monte Carlo dropout sampling.
Three independent case studies for cracks, local damage identification, and bridge component detection are investigated.
arXiv Detail & Related papers (2020-04-10T17:54:10Z) - Uncertainty-Based Out-of-Distribution Classification in Deep
Reinforcement Learning [17.10036674236381]
Wrong predictions for out-of-distribution data can cause safety critical situations in machine learning systems.
We propose a framework for uncertainty-based OOD classification: UBOOD.
We show that UBOOD produces reliable classification results when combined with ensemble-based estimators.
arXiv Detail & Related papers (2019-12-31T09:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.