Evaluation of Seismic Artificial Intelligence with Uncertainty
- URL: http://arxiv.org/abs/2501.14809v2
- Date: Mon, 02 Jun 2025 17:04:47 GMT
- Title: Evaluation of Seismic Artificial Intelligence with Uncertainty
- Authors: Samuel Myren, Nidhi Parikh, Rosalyn Rael, Garrison Flynn, Dave Higdon, Emily Casleton,
- Abstract summary: We develop an evaluation framework for evaluating and comparing deep learning models (DLMs)<n>Our framework helps practitioners choose the best model for their problem and set performance expectations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence has transformed the seismic community with deep learning models (DLMs) that are trained to complete specific tasks within workflows. However, there is still lack of robust evaluation frameworks for evaluating and comparing DLMs. We address this gap by designing an evaluation framework that jointly incorporates two crucial aspects: performance uncertainty and learning efficiency. To target these aspects, we meticulously construct the training, validation, and test splits using a clustering method tailored to seismic data and enact an expansive training design to segregate performance uncertainty arising from stochastic training processes and random data sampling. The framework's ability to guard against misleading declarations of model superiority is demonstrated through evaluation of PhaseNet [1], a popular seismic phase picking DLM, under 3 training approaches. Our framework helps practitioners choose the best model for their problem and set performance expectations by explicitly analyzing model performance with uncertainty at varying budgets of training data.
Related papers
- Rethinking BPS: A Utility-Based Evaluation Framework [6.590869939300887]
State-of-the-art approach to evaluating BPS models has two key limitations.<n>It treats simulation as a forecasting problem, testing whether models can predict unseen future events.<n>We propose a novel framework that evaluates simulation quality based on its ability to generate representative process behavior.
arXiv Detail & Related papers (2025-05-28T13:00:52Z) - DUET: Optimizing Training Data Mixtures via Feedback from Unseen Evaluation Tasks [40.91931801667421]
This paper presents a novel global-to-local algorithm called DUET that can exploit the feedback loop by interleaving a data selection method with Bayesian optimization.
As a result, DUET can efficiently refine the training data mixture from a pool of data domains to maximize the model's performance on the unseen evaluation task.
arXiv Detail & Related papers (2025-02-01T01:52:32Z) - Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational deep learning (DL) models are general models, trained on diverse, diverse, and unlabelled datasets.
We introduce Masked Spectrogram Modeling, a novel self-supervised learning approach for pretraining foundational DL models on radio signals.
arXiv Detail & Related papers (2024-11-14T23:56:57Z) - Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate [118.37653302885607]
We present the Modality Integration Rate (MIR), an effective, robust, and generalized metric to indicate the multi-modal pre-training quality of Large Vision Language Models (LVLMs)
MIR is indicative about training data selection, training strategy schedule, and model architecture design to get better pre-training results.
arXiv Detail & Related papers (2024-10-09T17:59:04Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Refining 3D Point Cloud Normal Estimation via Sample Selection [13.207964615561261]
We introduce a fundamental framework for normal estimation, enhancing existing model through the incorporation of global information and various constraint mechanisms.
We also utilize existing orientation methods to correct estimated non-oriented normals, achieving state-of-the-art performance in both oriented and non-oriented tasks.
arXiv Detail & Related papers (2024-05-20T02:06:10Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
We introduce an efficient framework for assessing data impact, comprising offline training and online evaluation stages.
Our proposed method achieves comparable model behavior evaluation while significantly speeding up the process compared to the direct retraining method.
arXiv Detail & Related papers (2024-04-22T09:16:14Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Self-Improving Interference Management Based on Deep Learning With
Uncertainty Quantification [10.403513606082067]
This paper presents a self-improving interference management framework tailored for wireless communications.
Our approach addresses the computational challenges inherent in traditional optimization-based algorithms.
A breakthrough of our framework is its acknowledgment of the limitations inherent in data-driven models.
arXiv Detail & Related papers (2024-01-24T03:28:48Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
Confidence calibration serves as a crucial tool for gauging the reliability of deep models.
We conduct a systematic examination of the calibration of aligned language models throughout the entire construction process.
Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.
arXiv Detail & Related papers (2023-11-22T08:57:55Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Making Pre-trained Language Models both Task-solvers and
Self-calibrators [52.98858650625623]
Pre-trained language models (PLMs) serve as backbones for various real-world systems.
Previous work shows that introducing an extra calibration task can mitigate this issue.
We propose a training algorithm LM-TOAST to tackle the challenges.
arXiv Detail & Related papers (2023-07-21T02:51:41Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Training, Architecture, and Prior for Deterministic Uncertainty Methods [33.45069308137142]
This work investigates important design choices in Deterministic Uncertainty Methods (DUMs)
We show that training schemes decoupling the core architecture and the uncertainty head schemes can significantly improve uncertainty performances.
Contrary to other Bayesian models, we show that the prior defined by DUMs do not have a strong effect on the final performances.
arXiv Detail & Related papers (2023-03-10T09:00:52Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - Holistic Deep Learning [3.718942345103135]
This paper presents a novel holistic deep learning framework that addresses the challenges of vulnerability to input perturbations, overparametrization, and performance instability.
The proposed framework holistically improves accuracy, robustness, sparsity, and stability over standard deep learning models.
arXiv Detail & Related papers (2021-10-29T14:46:32Z) - Learning Neural Models for Natural Language Processing in the Face of
Distributional Shift [10.990447273771592]
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications.
It builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time.
This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information.
It is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime
arXiv Detail & Related papers (2021-09-03T14:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.