論文の概要: Simulation-based Bayesian inference for robotic grasping
- arxiv url: http://arxiv.org/abs/2303.05873v1
- Date: Fri, 10 Mar 2023 11:56:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-13 15:12:10.435220
- Title: Simulation-based Bayesian inference for robotic grasping
- Title(参考訳): ロボットグルーピングのためのシミュレーションに基づくベイズ推定
- Authors: Norman Marlier, Olivier Br\"uls and Gilles Louppe
- Abstract要約: 一般的なロボットグリップパーは、そのリッチな非滑らかな接触ダイナミクスと環境やセンサノイズによる不確実性のため、制御が困難である。
本研究では,シミュレーションに基づくベイズ推定を用いて,6-DoFグリップポーズの計算方法を示す。
- 参考スコア(独自算出の注目度): 6.218934678555297
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: General robotic grippers are challenging to control because of their rich
nonsmooth contact dynamics and the many sources of uncertainties due to the
environment or sensor noise. In this work, we demonstrate how to compute 6-DoF
grasp poses using simulation-based Bayesian inference through the full
stochastic forward simulation of the robot in its environment while robustly
accounting for many of the uncertainties in the system. A Riemannian manifold
optimization procedure preserving the nonlinearity of the rotation space is
used to compute the maximum a posteriori grasp pose. Simulation and physical
benchmarks show the promising high success rate of the approach.
- Abstract(参考訳): 一般的なロボットグリッパーは、その豊富な非スムースな接触ダイナミクスと環境やセンサノイズによる不確実性の多くの原因のため、制御が困難である。
本研究では,シミュレーションに基づくベイズ推定を用いた6自由度把握手法を実環境におけるロボットの確率的フォワードシミュレーションを通じて実証し,システムの不確実性の多くをロバストに計算する。
回転空間の非線形性を保つリーマン多様体最適化手順は、最大後方把持姿勢を計算するために用いられる。
シミュレーションと物理的ベンチマークは、アプローチの有望な成功率を示している。
関連論文リスト
- DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
我々は、前方物理シミュレーションと後方勾配近似とニューラルネットワークを組み合わせた新しいディープラーニングパイプラインであるDeepSimHOを紹介する。
提案手法は, 評価の安定性を著しく向上し, テスト時間最適化よりも優れた効率性を実現する。
論文 参考訳(メタデータ) (2023-10-11T05:34:36Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
本研究では,BALLUロボットのシステム識別による制御ポリシのロバストなシミュレートを実演する。
標準的な教師あり学習の定式化に頼るのではなく、深層強化学習を利用して外部力政策を訓練する。
シミュレーショントラジェクトリと実世界のトラジェクトリを比較することで,改良されたシミュレーション忠実度を解析する。
論文 参考訳(メタデータ) (2023-03-16T18:49:05Z) - Analyzing and Enhancing Closed-loop Stability in Reactive Simulation [25.27603440925488]
本研究では,シミュレーションと現実の交通シナリオ間の人間の行動ギャップを埋める新しいリアクティブ・シミュレーション・フレームワークを提案する。
まず、シミュレーション状態列の滑らかさと一貫性が安定性の重要な要因となる新しい反応性シミュレーションフレームワークを提案する。
次に、反応シミュレーションの閉ループ安定性を改善するために、キネマティック車両モデルをフレームワークに組み込む。
論文 参考訳(メタデータ) (2022-08-09T06:31:35Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - Simulation-based Bayesian inference for multi-fingered robotic grasping [6.677646909984405]
マルチフィンガーロボットグリーピングは、普遍的なピックと巧妙な操作のための、決定不可能なステップストーンである。
しかし、マルチフィンガーグリップは、リッチな非滑らかな接触ダイナミクスやノイズのために制御が難しいままである。
本稿では,確率-証拠比の深部ニューラルネットワークに基づくベイズ推論のための新しいシミュレーションに基づく手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T08:44:36Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
シミュレーションで訓練されたポリシーは、しばしば現実世界に移されるときに失敗する。
ドメインのランダム化のようなこの問題に取り組む現在のアプローチには、事前の知識とエンジニアリングが必要である。
実世界に合わせてシミュレータシステムパラメータを自動的にチューニングする手法を提案する。
論文 参考訳(メタデータ) (2021-04-15T17:59:55Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
本稿では,シミュレーションで学習したモデルやポリシーを現実世界に伝達することを目的とした,様々なアルゴリズムの研究のためのベンチマークとフレームワークを提案する。
我々は、様々なアルゴリズムの性能に関する洞察を特徴付け、提供するために、広く知られたシミュレーション環境の実験を行う。
我々の分析は、この分野の実践者にとって有用であり、sim-to-realアルゴリズムの動作と主特性について、より深い選択をすることができる。
論文 参考訳(メタデータ) (2020-11-17T22:24:26Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z) - DISCO: Double Likelihood-free Inference Stochastic Control [29.84276469617019]
確率自由推論のためのベイズ統計学における現代シミュレータのパワーと最近の技術を活用することを提案する。
シミュレーションパラメータの後方分布は、システムの潜在的非解析モデルによって伝播される。
実験により、制御器の提案により、古典的な制御やロボット工学のタスクにおいて、優れた性能と堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2020-02-18T05:29:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。