論文の概要: Deep Anomaly Detection on Tennessee Eastman Process Data
- arxiv url: http://arxiv.org/abs/2303.05904v1
- Date: Fri, 10 Mar 2023 13:20:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-13 15:01:20.861476
- Title: Deep Anomaly Detection on Tennessee Eastman Process Data
- Title(参考訳): テネシー・イーストマンプロセスデータの深部異常検出
- Authors: Fabian Hartung, Billy Joe Franks, Tobias Michels, Dennis Wagner,
Philipp Liznerski, Steffen Reithermann, Sophie Fellenz, Fabian Jirasek, Maja
Rudolph, Daniel Neider, Heike Leitte, Chen Song, Benjamin Kloepper, Stephan
Mandt, Michael Bortz, Jakob Burger, Hans Hasse, Marius Kloft
- Abstract要約: 本稿では,化学プロセスデータに対する最新の(深層学習)教師なし異常検出手法の総合的評価と解析を行う。
我々は、30年近くにわたって異常検出手法をベンチマークする標準的なリトマステストであるテネシー・イーストマンプロセスデータセットに焦点を当てた。
- 参考スコア(独自算出の注目度): 24.333297112690627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper provides the first comprehensive evaluation and analysis of modern
(deep-learning) unsupervised anomaly detection methods for chemical process
data. We focus on the Tennessee Eastman process dataset, which has been a
standard litmus test to benchmark anomaly detection methods for nearly three
decades. Our extensive study will facilitate choosing appropriate anomaly
detection methods in industrial applications.
- Abstract(参考訳): 本稿では,化学プロセスデータに対する最新の(深層学習)教師なし異常検出手法の総合的評価と解析を行う。
我々は、30年近くにわたって異常検出手法をベンチマークする標準的なリトマステストであるテネシー・イーストマンプロセスデータセットに焦点を当てた。
本研究は,産業応用における適切な異常検出手法の選定を容易にする。
関連論文リスト
- Unsupervised Anomaly Detection Using Diffusion Trend Analysis [48.19821513256158]
本稿では, 劣化度に応じて, 復元傾向の分析により異常を検出する手法を提案する。
提案手法は,産業用異常検出のためのオープンデータセット上で検証される。
論文 参考訳(メタデータ) (2024-07-12T01:50:07Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - TracInAD: Measuring Influence for Anomaly Detection [0.0]
本稿では,TracInに基づく異常をフラグする新しい手法を提案する。
本研究では,変分オートエンコーダを用いて,テストポイントにおけるトレーニングポイントのサブサンプルの平均的な影響が,異常のプロキシとして有効であることを示す。
論文 参考訳(メタデータ) (2022-05-03T08:20:15Z) - A Critical Study on the Recent Deep Learning Based Semi-Supervised Video
Anomaly Detection Methods [3.198144010381572]
本稿では,この分野の研究者を新たな視点に紹介し,最近の深層学習に基づく半教師付きビデオ異常検出手法についてレビューする。
私たちのゴールは、より効果的なビデオ異常検出方法の開発を支援することです。
論文 参考訳(メタデータ) (2021-11-02T14:00:33Z) - A2Log: Attentive Augmented Log Anomaly Detection [53.06341151551106]
異常検出は、ITサービスの信頼性とサービス性にとってますます重要になる。
既存の教師なし手法は、適切な決定境界を得るために異常な例を必要とする。
我々は,異常判定と異常判定の2段階からなる教師なし異常検出手法であるA2Logを開発した。
論文 参考訳(メタデータ) (2021-09-20T13:40:21Z) - Anomaly Detection via Self-organizing Map [52.542991004752]
製品品質管理のための工業生産において,異常検出が重要な役割を担っている。
従来の異常検出方法は、限定的な一般化能力を持つルールベースである。
教師付きディープラーニングに基づく最近の手法は、より強力だが、訓練には大規模な注釈付きデータセットが必要である。
論文 参考訳(メタデータ) (2021-07-21T06:56:57Z) - Anomaly Detection in Univariate Time-series: A Survey on the
State-of-the-Art [0.0]
時系列データの異常検出は、長い間重要な研究分野であった。
近年,時系列の異常を検出する機械学習アルゴリズムが増えている。
研究者たちは、(ディープ)ニューラルネットワークを使ってこれらの技術を改善しようとした。
論文 参考訳(メタデータ) (2020-04-01T13:22:34Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
本調査は,ディープラーニングアプリケーションにおける異常検出の研究について,構造化された包括的概要を提供する。
既存の技術に対する分類法を,その基礎となる前提と採用アプローチに基づいて提案する。
本稿では,DLシステムに異常検出技術を適用しながら未解決の研究課題を取り上げ,今後の課題について述べる。
論文 参考訳(メタデータ) (2020-03-16T02:47:23Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
ビデオ異常検出に自己学習深層順序回帰を適用することで,既存の手法の2つの重要な限界を克服できることを示す。
我々は,手動で正規/異常データをラベル付けすることなく,共同表現学習と異常スコアリングを可能にする,エンドツーエンドのトレーニング可能なビデオ異常検出手法を考案した。
論文 参考訳(メタデータ) (2020-03-15T08:44:55Z) - $\text{A}^3$: Activation Anomaly Analysis [0.7734726150561088]
隠れアクティベーション値には,正常標本と異常標本の識別に有用な情報が含まれていることを示す。
我々のアプローチは、純粋にデータ駆動のエンドツーエンドモデルで3つのニューラルネットワークを組み合わせる。
異常ネットワークのおかげで、我々の手法は厳密な半教師付き設定でも機能する。
論文 参考訳(メタデータ) (2020-03-03T21:23:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。