論文の概要: MetaViewer: Towards A Unified Multi-View Representation
- arxiv url: http://arxiv.org/abs/2303.06329v1
- Date: Sat, 11 Mar 2023 07:17:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 19:35:54.766332
- Title: MetaViewer: Towards A Unified Multi-View Representation
- Title(参考訳): MetaViewer: 統一されたマルチビュー表現を目指して
- Authors: Ren Wang, Haoliang Sun, Yuling Ma, Xiaoming Xi, and Yilong Yin
- Abstract要約: 本稿では,二段階最適化に基づく新しい多視点学習フレームワークを提案する。
具体的には、メタラーナー、すなわちMetaViewerを訓練し、融合を学び、ビュー共有メタ表現をモデル化します。
- 参考スコア(独自算出の注目度): 29.71883878740635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing multi-view representation learning methods typically follow a
specific-to-uniform pipeline, extracting latent features from each view and
then fusing or aligning them to obtain the unified object representation.
However, the manually pre-specify fusion functions and view-private redundant
information mixed in features potentially degrade the quality of the derived
representation. To overcome them, we propose a novel
bi-level-optimization-based multi-view learning framework, where the
representation is learned in a uniform-to-specific manner. Specifically, we
train a meta-learner, namely MetaViewer, to learn fusion and model the
view-shared meta representation in outer-level optimization. Start with this
meta representation, view-specific base-learners are then required to rapidly
reconstruct the corresponding view in inner-level. MetaViewer eventually
updates by observing reconstruction processes from uniform to specific over all
views, and learns an optimal fusion scheme that separates and filters out
view-private information. Extensive experimental results in downstream tasks
such as classification and clustering demonstrate the effectiveness of our
method.
- Abstract(参考訳): 既存の多視点表現学習法は、通常、特定の対一のパイプラインに従い、各ビューから潜在特徴を抽出し、それらを融合または整列して統一されたオブジェクト表現を得る。
しかし、手動でフュージョン関数とビュー・プライベートな冗長情報が特徴に混ざり合っており、派生表現の品質が低下する可能性がある。
そこで我々は,この表現を一様から一様に学習する,二段階最適化に基づく新しい多視点学習フレームワークを提案する。
具体的には、メタラーナー、すなわちMetaViewerを訓練し、融合を学び、外部レベルの最適化でビュー共有メタ表現をモデル化する。
このメタ表現から始めると、ビュー固有のbase-learnerが、対応するビューをインナーレベルに迅速に再構築する必要がある。
metaviewerは最終的に、一様から特定のビュー全体への再構成プロセスを観察することで更新し、ビュー-プライベート情報を分離してフィルタする最適な融合スキームを学ぶ。
分類やクラスタリングなどの下流タスクにおける広範囲な実験結果から,本手法の有効性が示された。
関連論文リスト
- Beyond Mask: Rethinking Guidance Types in Few-shot Segmentation [67.35274834837064]
我々は、テキスト、マスク、ボックス、画像からのプロンプトを統合するユニバーサルビジョン言語フレームワーク(UniFSS)を開発した。
UniFSSは最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-07-16T08:41:01Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - Rethinking Multi-view Representation Learning via Distilled Disentangling [34.14711778177439]
マルチビュー表現学習は、多様なデータソースからビュー一貫性とビュー固有性の両方を持つ堅牢な表現を導出することを目的としている。
本稿では、この領域における既存のアプローチの詳細な分析を行い、ビュー一貫性とビュー固有表現の冗長性を強調した。
我々は,多視点表現学習のための革新的枠組みを提案し,これを「蒸留解離」と呼ぶ手法を取り入れた。
論文 参考訳(メタデータ) (2024-03-16T11:21:24Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
既存の自己管理フレームワークに組み込まれたCompMod with Meta Comprehensive Regularization (MCR)というモジュールを導入する。
提案したモデルを双方向最適化機構により更新し,包括的特徴を捉える。
本稿では,情報理論と因果対実的視点から提案手法の理論的支援を行う。
論文 参考訳(メタデータ) (2024-03-03T15:53:48Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - Semantically Consistent Multi-view Representation Learning [11.145085584637744]
SCMRL(Semantically Consistent Multi-view Representation Learning)を提案する。
SCMRLは、基礎となる多視点セマンティックコンセンサス情報を抽出し、その情報を利用して、統合された特徴表現学習を導く。
いくつかの最先端のアルゴリズムと比較して、広範な実験はその優位性を示している。
論文 参考訳(メタデータ) (2023-03-08T04:27:46Z) - Multi-View Clustering from the Perspective of Mutual Information [0.0]
Informative Multi-View Clustering (IMVC) と呼ばれる情報理論に基づく新しいモデルを提案する。
IMVCは、多視点データに隠された共通かつビュー固有の情報を抽出し、クラスタリング指向の包括的な表現を構築する。
本研究では,6つのベンチマークデータセットについて広範な実験を行い,IMVCが他の手法よりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2023-02-17T07:49:27Z) - A Clustering-guided Contrastive Fusion for Multi-view Representation
Learning [7.630965478083513]
本稿では、ビュー固有表現をビュー共通表現に融合する深層融合ネットワークを提案する。
また、ビュー共通表現とビュー固有表現を一致させる非対称なコントラスト戦略を設計する。
不完全な視点では,提案手法は競合相手よりもノイズ干渉に抵抗する。
論文 参考訳(メタデータ) (2022-12-28T07:21:05Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
マルチビュー表現学習は、過去数十年間で急速に発展し、多くの分野に応用されてきた。
本稿では,多視点情報を統合してデータアライメントを行い,潜在表現を学習する,新しいクロスビューグラフコントラスト学習フレームワークを提案する。
複数の実データを用いて実験を行い,クラスタリングおよび分類作業における提案手法の有効性を示した。
論文 参考訳(メタデータ) (2022-11-08T09:19:32Z) - Not All Instances Contribute Equally: Instance-adaptive Class
Representation Learning for Few-Shot Visual Recognition [94.04041301504567]
少数ショットの視覚認識は、いくつかのラベル付きインスタンスから新しい視覚概念を認識することを指す。
本稿では,数ショットの視覚認識を実現するために,インスタンス適応型クラス表現学習ネットワーク(ICRL-Net)と呼ばれる新しいメトリックベースのメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-07T10:00:18Z) - Fashionformer: A simple, Effective and Unified Baseline for Human
Fashion Segmentation and Recognition [80.74495836502919]
本研究では,共同ファッションセグメンテーションと属性認識に着目した。
本稿では,セグメンテーションのためのオブジェクトクエリと属性予測のための属性クエリを紹介する。
属性ストリームのために,よりきめ細かい特徴を探索する新しいマルチレイヤレンダリングモジュールを設計する。
論文 参考訳(メタデータ) (2022-04-10T11:11:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。