論文の概要: Scene Graph Generation from Hierarchical Relationship Reasoning
- arxiv url: http://arxiv.org/abs/2303.06842v2
- Date: Wed, 26 Jul 2023 03:53:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 15:51:52.298448
- Title: Scene Graph Generation from Hierarchical Relationship Reasoning
- Title(参考訳): 階層的関係推論によるシーングラフ生成
- Authors: Bowen Jiang and Camillo J. Taylor
- Abstract要約: 本稿では,オブジェクトと関係カテゴリを非結合なスーパーカテゴリに分割するために課せられる情報的階層構造を利用する。
Visual GenomeとOpenImage V6データセットの実験的評価は、この分解されたアプローチが比較的単純なモデルで競合的なパフォーマンスを実現することを実証している。
- 参考スコア(独自算出の注目度): 7.173672376533384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach for inferring relationships between
objects in visual scenes. It explicitly exploits an informative hierarchical
structure that can be imposed to divide the object and relationship categories
into disjoint super-categories. Specifically, our proposed method incorporates
a Bayes prediction head, enabling joint predictions of the super-category as
the type of relationship between the two objects, along with the detailed
relationship within that super-category. This design reduces the impact of
class imbalance problems. Furthermore, we also modify the supervised
contrastive learning to adapt our hierarchical classification scheme.
Experimental evaluations on the Visual Genome and OpenImage V6 datasets
demonstrate that this factorized approach allows a relatively simple model to
achieve competitive performance, particularly in predicate classification and
zero-shot tasks.
- Abstract(参考訳): 本稿では,視覚場面における物体間の関係を推定する新しい手法を提案する。
オブジェクトと関係のカテゴリを分離するために課せられる、有益で階層的な構造を明示的に利用します。
具体的には,提案手法はベイズ予測ヘッドを組み込んで,2つのオブジェクト間の関係の型としてスーパーカテゴリの結合予測と,そのスーパーカテゴリ内の詳細な関係を実現できる。
この設計はクラス不均衡の問題の影響を低減する。
さらに,教師付きコントラスト学習を改良し,階層型分類方式を適用した。
Visual GenomeとOpenImage V6データセットの実験的評価は、この分解されたアプローチが比較的単純なモデルで、特に述語分類やゼロショットタスクにおいて、競争的なパフォーマンスを達成することを実証している。
関連論文リスト
- From Logits to Hierarchies: Hierarchical Clustering made Simple [16.132657141993548]
事前訓練された非階層クラスタリングモデル上に実装された軽量なプロシージャは、階層クラスタリングに特化して設計されたモデルより優れていることを示す。
提案手法は,微調整を必要とせず,ログを出力する事前学習クラスタリングモデルに適用可能である。
論文 参考訳(メタデータ) (2024-10-10T12:27:45Z) - Enhancing Scene Graph Generation with Hierarchical Relationships and Commonsense Knowledge [7.28830964611216]
この研究は、関係階層とコモンセンス知識の両方によってシーングラフを生成するための拡張されたアプローチを導入する。
我々は,シーングラフ予測システムから結果を批判するために基礎モデルを活用する,堅牢なコモンセンス検証パイプラインを実装した。
Visual GenomeとOpenImage V6データセットの実験では、既存のシーングラフ生成アルゴリズムのプラグインとプレイの拡張として、提案されたモジュールをシームレスに統合できることが示されている。
論文 参考訳(メタデータ) (2023-11-21T06:03:20Z) - Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting [18.069747511100132]
時系列間の関係は、効果的な予測モデル学習における帰納バイアスとして利用することができる。
本稿では,関係性および階層的帰納バイアスを統一するグラフベースの手法を提案する。
論文 参考訳(メタデータ) (2023-05-30T16:27:25Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
本稿では,階層構造の回復に着目した凝集クラスタリングアルゴリズムの新しい視点を提案する。
クラスタを最大平均点積でマージし、例えば最小距離やクラスタ内分散でマージしないような、標準的なアルゴリズムの単純な変種を推奨する。
このアルゴリズムにより得られた木は、汎用確率的グラフィカルモデルの下で、データ中の生成的階層構造をボナフェイド推定することを示した。
論文 参考訳(メタデータ) (2023-05-24T11:05:12Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
現在のシーングラフ生成(SGG)手法は、コンテキスト情報を探索し、エンティティペア間の関係を予測する。
被写体と対象物の組み合わせが多様であるため、各述語カテゴリーには大きなクラス内変異が存在する。
プロトタイプベースのEmbedding Network (PE-Net) は、エンティティ/述語を、プロトタイプに準拠したコンパクトで独特な表現でモデル化する。
PLは、PE-Netがそのようなエンティティ述語マッチングを効率的に学習するのを助けるために導入され、不明瞭なエンティティ述語マッチングを緩和するためにプロトタイプ正規化(PR)が考案されている。
論文 参考訳(メタデータ) (2023-03-13T13:30:59Z) - Iterative Scene Graph Generation [55.893695946885174]
シーングラフ生成は、オブジェクトエンティティとその対応する相互作用述語を所定の画像(またはビデオ)で識別する。
シーングラフ生成への既存のアプローチは、推定イテレーションの実現を可能にするために、関節分布の特定の因子化を前提としている。
本稿では,この制限に対処する新しいフレームワークを提案するとともに,画像に動的条件付けを導入する。
論文 参考訳(メタデータ) (2022-07-27T10:37:29Z) - Relation Regularized Scene Graph Generation [206.76762860019065]
SGG(Scene Graph Generation)は、検出されたオブジェクトの上に構築され、オブジェクトのペアの視覚的関係を予測する。
本稿では,2つのオブジェクト間の関係を予測できる関係正規化ネットワーク(R2-Net)を提案する。
我々のR2-Netはオブジェクトラベルを効果的に洗練し、シーングラフを生成する。
論文 参考訳(メタデータ) (2022-02-22T11:36:49Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Automated Concatenation of Embeddings for Structured Prediction [75.44925576268052]
本稿では, 埋め込みの自動結合(ACE)を提案し, 構造予測タスクにおける埋め込みのより優れた結合を見つけるプロセスを自動化する。
我々は、強化学習の戦略に従い、制御器のパラメータを最適化し、タスクモデルの精度に基づいて報酬を計算する。
論文 参考訳(メタデータ) (2020-10-10T14:03:20Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
本稿では,潜在文書レベルグラフを自動的に誘導することにより,文間の関係推論を促進する新しいモデルを提案する。
具体的には、大規模文書レベルデータセット(DocRED)上でF1スコア59.05を達成する。
論文 参考訳(メタデータ) (2020-05-13T13:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。