論文の概要: Optimization of Velocity Ramps with Survival Analysis for Intersection
Merge-Ins
- arxiv url: http://arxiv.org/abs/2303.07047v1
- Date: Mon, 13 Mar 2023 12:13:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 15:18:10.077749
- Title: Optimization of Velocity Ramps with Survival Analysis for Intersection
Merge-Ins
- Title(参考訳): インターセクションマージインの生存解析による速度ランプの最適化
- Authors: Tim Puphal, Malte Probst, Yiyang Li, Yosuke Sakamoto and Julian Eggert
- Abstract要約: 任意の形状と車両密度のT区間マージインに対する正確な動作計画の問題点を考察する。
マージイン支援システムは、2台の連続車両間のギャップをうまく取ることができる確率を見積もる必要がある。
- 参考スコア(独自算出の注目度): 1.6326895385412847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of correct motion planning for T-intersection
merge-ins of arbitrary geometry and vehicle density. A merge-in support system
has to estimate the chances that a gap between two consecutive vehicles can be
taken successfully. In contrast to previous models based on heuristic gap size
rules, we present an approach which optimizes the integral risk of the
situation using parametrized velocity ramps. It accounts for the risks from
curves and all involved vehicles (front and rear on all paths) with a so-called
survival analysis. For comparison, we also introduce a specially designed
extension of the Intelligent Driver Model (IDM) for entering intersections. We
show in a quantitative statistical evaluation that the survival method provides
advantages in terms of lower absolute risk (i.e., no crash happens) and better
risk-utility tradeoff (i.e., making better use of appearing gaps). Furthermore,
our approach generalizes to more complex situations with additional risk
sources.
- Abstract(参考訳): 任意の形状と車両密度のt-intersection merge-inの正しい動作計画の問題を考える。
マージイン支援システムは、2つの連続する車両間のギャップをうまく取り出せる確率を見積もる必要がある。
ヒューリスティックギャップサイズルールに基づく従来のモデルとは対照的に,パラメトリズド速度ランプを用いた状況統合リスクを最適化する手法を提案する。
曲線や、あらゆる経路におけるすべての車両(前方と後方)からのリスクを、いわゆる生存分析で説明する。
比較のために,交差点に入るためのインテリジェントドライバモデル(IDM)を特別に設計した拡張も導入する。
本研究は, 生存方法が絶対リスク(衝突は起こらない), リスク有効性トレードオフ(出現ギャップの有効利用)の点で有利であることを示す定量的統計学的評価を行った。
さらに,本手法はリスク源を付加したより複雑な状況に一般化する。
関連論文リスト
- Urban Traffic Accident Risk Prediction Revisited: Regionality, Proximity, Similarity and Sparsity [18.566139471849844]
交通事故は人間の健康と財産の安全に重大な危険をもたらす。
交通事故を防ぐために、リスクを予測することで関心が高まっている。
望ましい予測ソリューションは、交通事故の複雑さに対するレジリエンスを示すべきである、と我々は主張する。
論文 参考訳(メタデータ) (2024-07-29T03:10:15Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
最近の構造化学習手法のストリームは、様々な最適化問題に対する技術の実践的状態を改善している。
鍵となる考え方は、インスタンスを別々に扱うのではなく、インスタンス上の統計分布を利用することだ。
本稿では,最適化を容易にし,一般化誤差を改善するポリシを摂動することでリスクを円滑にする手法について検討する。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Domain Generalization without Excess Empirical Risk [83.26052467843725]
一般的なアプローチは、一般化を捉え、ペナルティと共同で経験的リスクを最小化するために、データ駆動の代理ペナルティを設計することである。
我々は、このレシピの重大な失敗モードは、共同最適化における誤ったペナルティや難しさによる過度なリスクであると主張している。
我々は,この問題を解消するアプローチを提案し,経験的リスクと刑罰を同時に最小化する代わりに,経験的リスクの最適性の制約の下でのペナルティを最小化する。
論文 参考訳(メタデータ) (2023-08-30T08:46:46Z) - Probabilistic Uncertainty-Aware Risk Spot Detector for Naturalistic
Driving [1.8047694351309207]
リスクアセスメントは自動運転車の開発と検証の中心的な要素である。
Time Headway (TH) と Time-To-Contact (TTC) は一般的にリスクメトリクスとして使われ、発生確率と質的な関係を持つ。
本稿では,生存分析に基づく確率論的状況リスクモデルを提案し,それを自然に知覚・時間的・行動的不確実性に組み込むよう拡張する。
論文 参考訳(メタデータ) (2023-03-13T15:22:51Z) - Multi-Agent Chance-Constrained Stochastic Shortest Path with Application
to Risk-Aware Intelligent Intersection [15.149982804527182]
既存の自動交差点の深刻な課題は、運転環境や人間駆動車からの不確実性の検出と推論にある。
自動運転車(AV)と人間駆動車(HV)のためのリスク対応知的交差点システムを提案する。
論文 参考訳(メタデータ) (2022-10-03T06:49:23Z) - A Probabilistic Framework for Estimating the Risk of Pedestrian-Vehicle
Conflicts at Intersections [5.8366275205801985]
本研究では,交差点における歩行者と車両の衝突リスクを推定するための確率的枠組みを提案する。
提案フレームワークは,ガウスプロセス回帰を用いた軌道予測により,一定速度の制約を緩和する。
交差点で収集した実世界のLiDARデータを用いて,提案フレームワークの性能評価を行った。
論文 参考訳(メタデータ) (2022-07-28T15:08:41Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
リスク逆強化学習(RL)では、リターンのリスク測定を最適化することが目標である。
特定の条件下では、これは必然的に局所最適障壁につながることを証明し、それを回避するためのソフトリスク機構を提案する。
迷路ナビゲーション,自律運転,資源配分ベンチマークにおいて,リスク回避の改善を示す。
論文 参考訳(メタデータ) (2022-05-10T19:40:52Z) - Prediction-Based Reachability Analysis for Collision Risk Assessment on
Highways [18.18842948832662]
本稿では,高速道路における衝突危険度予測手法を提案する。
我々は,車両状態を伝搬する多モード確率加速度分布を提供する加速度予測モデルを開発した。
提案した衝突検出アプローチはアジャイルであり、カットインクラッシュイベントにおける衝突の特定に有効である。
論文 参考訳(メタデータ) (2022-05-03T07:58:02Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。