論文の概要: A Probabilistic Framework for Estimating the Risk of Pedestrian-Vehicle
Conflicts at Intersections
- arxiv url: http://arxiv.org/abs/2207.14145v1
- Date: Thu, 28 Jul 2022 15:08:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-29 12:45:21.361521
- Title: A Probabilistic Framework for Estimating the Risk of Pedestrian-Vehicle
Conflicts at Intersections
- Title(参考訳): 歩行者・車両衝突危険度推定のための確率的枠組み
- Authors: Pei Li, Huizhong Guo, Shan Bao, Arpan Kusari
- Abstract要約: 本研究では,交差点における歩行者と車両の衝突リスクを推定するための確率的枠組みを提案する。
提案フレームワークは,ガウスプロセス回帰を用いた軌道予測により,一定速度の制約を緩和する。
交差点で収集した実世界のLiDARデータを用いて,提案フレームワークの性能評価を行った。
- 参考スコア(独自算出の注目度): 5.8366275205801985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian safety has become an important research topic among various
studies due to the increased number of pedestrian-involved crashes. To evaluate
pedestrian safety proactively, surrogate safety measures (SSMs) have been
widely used in traffic conflict-based studies as they do not require historical
crashes as inputs. However, most existing SSMs were developed based on the
assumption that road users would maintain constant velocity and direction. Risk
estimations based on this assumption are less unstable, more likely to be
exaggerated, and unable to capture the evasive maneuvers of drivers.
Considering the limitations among existing SSMs, this study proposes a
probabilistic framework for estimating the risk of pedestrian-vehicle conflicts
at intersections. The proposed framework loosen restrictions of constant speed
by predicting trajectories using a Gaussian Process Regression and accounts for
the different possible driver maneuvers with a Random Forest model. Real-world
LiDAR data collected at an intersection was used to evaluate the performance of
the proposed framework. The newly developed framework is able to identify all
pedestrian-vehicle conflicts. Compared to the Time-to-Collision, the proposed
framework provides a more stable risk estimation and captures the evasive
maneuvers of vehicles. Moreover, the proposed framework does not require
expensive computation resources, which makes it an ideal choice for real-time
proactive pedestrian safety solutions at intersections.
- Abstract(参考訳): 歩行者による事故の増加により、歩行者の安全は様々な研究において重要な研究課題となっている。
歩行者の安全を積極的に評価するために、交通紛争に基づく研究において、過去の事故を入力として必要とせず、サーロゲート安全対策(ssm)が広く用いられている。
しかし、既存のssmの多くは、道路利用者が一定の速度と方向を維持すると仮定して開発された。
この仮定に基づくリスク推定は不安定ではなく、過大評価される可能性が高く、ドライバーの回避策を捉えられない。
本研究は,既存のSSMの制約を考慮し,交差点における歩行者と車両の衝突リスクを推定するための確率的枠組みを提案する。
提案手法は,ガウスプロセス回帰を用いた軌道予測により一定速度の制約を緩和し,ランダムフォレストモデルによる異なる運転操作を考慮した。
交差点で収集した実世界のLiDARデータを用いて,提案フレームワークの性能評価を行った。
新たに開発されたフレームワークは、歩行者と車両の衝突をすべて識別することができる。
Time-to-Collisionと比較して、提案フレームワークはより安定したリスク推定を提供し、車両の回避操作をキャプチャする。
さらに,提案手法は高価な計算資源を必要としないため,交差点におけるリアルタイムな歩行者安全対策に最適である。
関連論文リスト
- A Real-time Evaluation Framework for Pedestrian's Potential Risk at Non-Signalized Intersections Based on Predicted Post-Encroachment Time [1.0124625066746595]
本研究では,歩行者の潜在的なリスクをリアルタイムに評価するために,コンピュータビジョン技術と予測モデルを用いたフレームワークを開発した。
P-PET(Predicted Post-Encroachment Time)は、交差点で歩行者や車両が到着する時刻を予測できるディープラーニングモデルから派生した、予測後時間(Predicted Post-Encroachment Time)である。
論文 参考訳(メタデータ) (2024-04-24T04:10:05Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
本研究では,コネクテッド・アンド・オートマチック・ビークル(CAV)環境下での電位場理論に基づく総合運転リスク管理フレームワークRCP-RFを提案する。
既存のアルゴリズムと異なり,エゴ車と障害物車と歩行者係数の移動傾向は,提案手法において正当に考慮されている。
実世界のデータセットNGSIMおよび実AVプラットフォーム上での最先端手法に対する提案手法の優位性を検証する実証的研究を行った。
論文 参考訳(メタデータ) (2023-05-04T01:54:37Z) - Probabilistic Uncertainty-Aware Risk Spot Detector for Naturalistic
Driving [1.8047694351309207]
リスクアセスメントは自動運転車の開発と検証の中心的な要素である。
Time Headway (TH) と Time-To-Contact (TTC) は一般的にリスクメトリクスとして使われ、発生確率と質的な関係を持つ。
本稿では,生存分析に基づく確率論的状況リスクモデルを提案し,それを自然に知覚・時間的・行動的不確実性に組み込むよう拡張する。
論文 参考訳(メタデータ) (2023-03-13T15:22:51Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
本研究では,フィールドと集中型プロセスを組み合わせた歩行者安全システムについて紹介する。
本システムは,現場における今後のリスクを直ちに警告し,実際の衝突のない道路の安全レベルを評価することにより,危険頻繁なエリアの安全性を向上させることができる。
論文 参考訳(メタデータ) (2021-07-26T23:00:56Z) - Pedestrian Emergence Estimation and Occlusion-Aware Risk Assessment for
Urban Autonomous Driving [0.0]
都市部における自律走行における歩行者の出現予測と排他的リスク評価システムを提案する。
まず,視覚車や歩行者などの状況情報を用いて,閉塞地域における歩行者の出現確率を推定する。
提案した制御器は安全性と快適性の観点から基準線よりも優れていた。
論文 参考訳(メタデータ) (2021-07-06T00:07:09Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Towards Safe Policy Improvement for Non-Stationary MDPs [48.9966576179679]
多くの実世界の利害問題は非定常性を示し、利害関係が高ければ、偽の定常性仮定に関連するコストは受け入れがたい。
我々は、スムーズに変化する非定常的な意思決定問題に対して、高い信頼性で安全性を確保するための第一歩を踏み出します。
提案手法は,時系列解析を用いたモデルフリー強化学習の合成により,セルドンアルゴリズムと呼ばれる安全なアルゴリズムを拡張した。
論文 参考訳(メタデータ) (2020-10-23T20:13:51Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
トレーニング外の配布(OOD)シナリオは、デプロイ時にエージェントを学ぶ上で一般的な課題である。
インプロバスト模倣計画(RIP)と呼ばれる不確実性を考慮した計画手法を提案する。
提案手法は,OODシーンにおける過信および破滅的な外挿を低減し,分布変化を検知し,回復することができる。
分散シフトを伴うタスク群に対する駆動エージェントのロバスト性を評価するために,自動走行車ノベルシーンベンチマークであるtexttCARNOVEL を導入する。
論文 参考訳(メタデータ) (2020-06-26T11:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。