論文の概要: Higher-Order Methods for Hamiltonian Engineering Pulse Sequence Design
- arxiv url: http://arxiv.org/abs/2303.07374v1
- Date: Mon, 13 Mar 2023 18:00:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 17:58:44.019141
- Title: Higher-Order Methods for Hamiltonian Engineering Pulse Sequence Design
- Title(参考訳): ハミルトン工学的パルスシーケンス設計のための高次法
- Authors: Matthew Tyler, Hengyun Zhou, Leigh S. Martin, Nathaniel Leitao,
Mikhail D. Lukin
- Abstract要約: 本稿では,Floquet-Magnus拡大に対する高次寄与の影響を考慮に入れたハミルトン工学的パルス列を設計するためのフレームワークを提案する。
我々の手法は、複雑で非局所的な通勤者を含む高次貢献にもかかわらず、単純で直感的な分離ルールをもたらす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a framework for designing Hamiltonian engineering pulse
sequences that systematically accounts for the effects of higher-order
contributions to the Floquet-Magnus expansion. Our techniques result in simple,
intuitive decoupling rules, despite the higher-order contributions naively
involving complicated, non-local-in-time commutators. We illustrate how these
rules can be used to efficiently design improved Hamiltonian engineering pulse
sequences for a wide variety of tasks, such as dynamical decoupling, quantum
sensing, and quantum simulation.
- Abstract(参考訳): Floquet-Magnus拡大に対する高次寄与の影響を体系的に考慮したハミルトン工学的パルス列を設計するためのフレームワークを提案する。
提案手法は,複雑で非局所的な通勤者を含む高階の貢献にもかかわらず,単純で直感的なルール分離を実現する。
これらのルールは、動的疎結合、量子センシング、量子シミュレーションなど、様々なタスクのために改良されたハミルトン工学のパルスシーケンスを効率的に設計するためにどのように使用できるかを説明する。
関連論文リスト
- Perturbative Framework for Engineering Arbitrary Floquet Hamiltonian [0.0]
フロケット位相空間における任意の対象ハミルトニアンを設計するための体系的摂動フレームワークを開発する。
工学的なフロケ・ハミルトンの高次誤差は、高次駆動電位を摂動的に付加することによって緩和される。
論文 参考訳(メタデータ) (2024-10-14T12:58:55Z) - Platonic dynamical decoupling sequences for qudits [0.0]
ハミルトン群に対するマヨラナ表現の一般化を用いて、各プラトン列の疎結合性を確立するための単純な枠組みを開発する。
これらのシーケンスは、最大6レベルの単一量子ビットに対して環境とのあらゆる種類の相互作用をキャンセルする能力において普遍的である。
最大5体までの相互作用を、グローバルパルスのみと相互作用する量子ビットのアンサンブルで分離することができる。
論文 参考訳(メタデータ) (2024-09-08T04:52:12Z) - A General Framework for Gradient-Based Optimization of Superconducting Quantum Circuits using Qubit Discovery as a Case Study [0.19528996680336308]
超伝導量子回路の勾配に基づく最適化のための網羅的な枠組みを提案する。
この枠組みをキュービット発見問題に適用し、優れた性能指標を持つキュービット設計の同定の有効性を実証する。
論文 参考訳(メタデータ) (2024-08-22T19:46:50Z) - Hamiltonian simulation in Zeno subspaces [0.0]
ハミルトンシミュレーションのための量子アルゴリズムの設計と解析の枠組みとして量子ゼノ効果について検討する。
本研究では, アシラ量子ビットレジスタの頻繁なプロジェクティブ測定により, ターゲット量子ビットレジスタ上の量子力学を, ランダム化アプローチと類似した回路複雑度でシミュレートできることを示す。
論文 参考訳(メタデータ) (2024-05-22T12:35:57Z) - Mapping Molecular Hamiltonians into Hamiltonians of Modular cQED
Processors [50.893896302254944]
本稿では,任意のモデル系のハミルトニアンを回路量子力学(cQED)プロセッサのハミルトニアンにマッピングする方法を提案する。
この方法は、Fenna-Matthews-Olson錯体の量子力学シミュレーションと電荷移動のスピン-ボソンモデルに適用される。
論文 参考訳(メタデータ) (2023-06-10T04:52:58Z) - Robust Hamiltonian Engineering for Interacting Qudit Systems [50.591267188664666]
我々は、強く相互作用するキューディット系のロバストな動的疎結合とハミルトン工学の定式化を開発する。
本研究では,これらの手法を,スピン-1窒素空洞中心の強相互作用・無秩序なアンサンブルで実験的に実証した。
論文 参考訳(メタデータ) (2023-05-16T19:12:41Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
我々はQuTiPの量子情報処理パッケージであるqutip-qipに新しいツールを導入する。
これらのツールはパルスレベルで量子回路をシミュレートし、QuTiPの量子力学解法と制御最適化機能を活用する。
シミュレーションプロセッサ上で量子回路がどのようにコンパイルされ、制御パルスがターゲットハミルトニアンに作用するかを示す。
論文 参考訳(メタデータ) (2021-05-20T17:06:52Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
論文 参考訳(メタデータ) (2020-12-16T21:43:38Z) - Process tomography of Robust Dynamical Decoupling in Superconducting
Qubits [91.3755431537592]
リゲッティ量子コンピューティングプラットフォームは、異なる動的デカップリングシーケンスをテストするために使用された。
シーケンスの性能は量子プロセストモグラフィーによって特徴づけられ、量子チャネル形式を用いて解析された。
論文 参考訳(メタデータ) (2020-06-18T14:48:18Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
量子プロセッサは、ハードウェアに固有のものではないダイナミクスを効率的にシミュレートするためにプログラムできることを示す。
誤差補正のないノイズのあるデバイスでは、モジュールゲートを用いて量子プログラムをコンパイルするとシミュレーション結果が大幅に改善されることを示す。
論文 参考訳(メタデータ) (2020-04-15T05:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。