論文の概要: Multiway clustering of 3-order tensor via affinity matrix
- arxiv url: http://arxiv.org/abs/2303.07757v1
- Date: Tue, 14 Mar 2023 10:02:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 15:39:44.305985
- Title: Multiway clustering of 3-order tensor via affinity matrix
- Title(参考訳): アフィニティ行列による3階テンソルのマルチウェイクラスタリング
- Authors: Dina Faneva Andriantsiory, Joseph Ben Geloun, Mustapha Lebbah
- Abstract要約: 親和性行列(MCAM)を用いた3階テンソルのマルチウェイクラスタリング法を提案する。
テンソルスライスと各スライスに関する情報の拡散の類似性の概念に基づいて、我々は高度なクラスタリング法を適用した親和性/相似性行列を構築した。
MCAMは、他の既知の合成アルゴリズムや実際のデータセットと比較して、競合的な結果が得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new method of multiway clustering for 3-order tensors via
affinity matrix (MCAM). Based on a notion of similarity between the tensor
slices and the spread of information of each slice, our model builds an
affinity/similarity matrix on which we apply advanced clustering methods. The
combination of all clusters of the three modes delivers the desired multiway
clustering. Finally, MCAM achieves competitive results compared with other
known algorithms on synthetics and real datasets.
- Abstract(参考訳): 本稿では,アフィニティ行列(MCAM)を用いた3階テンソルのマルチウェイクラスタリング手法を提案する。
テンソルスライスと各スライスに関する情報の拡散の類似性の概念に基づいて、我々は高度なクラスタリング手法を適用した親和性/類似性行列を構築した。
3つのモードのすべてのクラスタの組み合わせは、所望のマルチウェイクラスタリングを提供する。
最後に、MCAMは、合成や実際のデータセットに関する他の既知のアルゴリズムと比較して、競合的な結果が得られる。
関連論文リスト
- Mixture of multilayer stochastic block models for multiview clustering [0.0]
本稿では,異なる情報源から得られた複数のクラスタリングを集約する独自の手法を提案する。
モデルパラメータの同定可能性を確立し,これらのパラメータを推定するために変分ベイズEMアルゴリズムを提案する。
この手法は、グローバルな食品取引網の分析に利用され、興味のある構造に繋がる。
論文 参考訳(メタデータ) (2024-01-09T17:15:47Z) - Parallel Computation of Multi-Slice Clustering of Third-Order Tensors [0.08192907805418585]
3次テンソルに対するマルチスライスクラスタリング(MSC)の並列アルゴリズムを考案した。
並列計算方式は逐次計算より優れており,MSC法のスケーラビリティが向上していることを示す。
論文 参考訳(メタデータ) (2023-09-29T16:38:51Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Uniform tensor clustering by jointly exploring sample affinities of
various orders [37.11798745294855]
複数サンプルの親和性を利用してサンプル近接を特徴付ける統一テンソルクラスタリング法(UTC)を提案する。
UTCは、高次元データを処理する際に異なる順序親和性を利用することによりクラスタリングを強化することが確認される。
論文 参考訳(メタデータ) (2023-02-03T06:43:08Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
本研究は,マルチラベル分類を管理するための新しいアンサンブル手法を提案する。
提案手法のコアは,Adamグラデーション最適化アプローチの変種で訓練された,ゲート再帰単位と時間畳み込みニューラルネットワークの組み合わせである。
論文 参考訳(メタデータ) (2021-10-09T00:00:16Z) - Multi-Slice Clustering for 3-order Tensor Data [0.12891210250935145]
3次元データのトリクラスタリングには、各次元のクラスタサイズを指定する必要がある。
本稿では,3階テンソルデータセットに対するマルチスライスクラスタリング(MSC)を提案する。
本アルゴリズムの有効性は,合成データセットと実世界のデータセットの両方で示される。
論文 参考訳(メタデータ) (2021-09-22T15:49:48Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - Conjoined Dirichlet Process [63.89763375457853]
我々はディリクレ過程に基づく新しい非パラメトリック確率的ビクラスタリング法を開発し、列と列の双方に強い共起を持つビクラスタを同定する。
本手法はテキストマイニングと遺伝子発現解析の2つの異なる応用に適用し,既存の手法に比べて多くの設定でビクラスタ抽出を改善することを示す。
論文 参考訳(メタデータ) (2020-02-08T19:41:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。