論文の概要: ICICLE: Interpretable Class Incremental Continual Learning
- arxiv url: http://arxiv.org/abs/2303.07811v1
- Date: Tue, 14 Mar 2023 11:31:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-15 15:20:28.819621
- Title: ICICLE: Interpretable Class Incremental Continual Learning
- Title(参考訳): ICICLE:解釈可能なクラスインクリメンタル学習
- Authors: Dawid Rymarczyk, Joost van de Weijer, Bartosz Zieli\'nski,
Bart{\l}omiej Twardowski
- Abstract要約: Interpretable Class-InCremental LEarning (ICICLE) は、模範的な部分ベースのアプローチを採用する、典型的なフリーアプローチである。
ICICLEは,解釈可能性の概念のドリフトを低減し,従来のクラス増分学習手法よりも優れることを示す。
- 参考スコア(独自算出の注目度): 35.105786309067895
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning enables incremental learning of new tasks without
forgetting those previously learned, resulting in positive knowledge transfer
that can enhance performance on both new and old tasks. However, continual
learning poses new challenges for interpretability, as the rationale behind
model predictions may change over time, leading to interpretability concept
drift. We address this problem by proposing Interpretable Class-InCremental
LEarning (ICICLE), an exemplar-free approach that adopts a prototypical
part-based approach. It consists of three crucial novelties: interpretability
regularization that distills previously learned concepts while preserving
user-friendly positive reasoning; proximity-based prototype initialization
strategy dedicated to the fine-grained setting; and task-recency bias
compensation devoted to prototypical parts. Our experimental results
demonstrate that ICICLE reduces the interpretability concept drift and
outperforms the existing exemplar-free methods of common class-incremental
learning when applied to concept-based models. We make the code available.
- Abstract(参考訳): 継続的な学習は、前回の学習を忘れずに新しいタスクを漸進的に学習することを可能にし、結果として、新しいタスクと古いタスクの両方のパフォーマンスを向上させるポジティブな知識伝達をもたらす。
しかし、連続学習は、モデル予測の背後にある理論的根拠が時間とともに変化し、解釈可能性の概念の漂流につながるため、解釈可能性に新たな課題をもたらす。
そこで本研究では, 解釈型クラス-InCremental LEarning (ICICLE) を提案する。
ユーザフレンドリーな肯定的推論を維持しながら学習した概念を蒸留する解釈可能性の正則化、きめ細かい設定に特化した近接型プロトタイプ初期化戦略、原型部品に特化したタスク関連バイアス補償である。
実験の結果,ICICLEは解釈可能性の概念のドリフトを低減し,概念ベースモデルに適用した場合,従来のクラス増分学習法よりも優れた性能を発揮することがわかった。
コードを利用可能にします。
関連論文リスト
- Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z) - Incremental Prototype Prompt-tuning with Pre-trained Representation for
Class Incremental Learning [4.717066668969749]
クラスインクリメンタルな学習は多くの注目を集めていますが、既存のほとんどの研究は、表現モデルを継続的に微調整しています。
我々は、事前学習パラダイムを用いて、固定されたセマンティックリッチな事前学習表現モデルに基づいて、新しい視覚概念を逐次学習する。
我々の手法は、多くのマージンを持つ他の最先端手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2022-04-07T12:49:14Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Multicriteria interpretability driven Deep Learning [0.0]
ディープラーニングの手法はパフォーマンスで有名だが、その解釈可能性の欠如は、高い文脈での学習を妨げている。
近年のモデル手法では、モデルの内部動作をリバースエンジニアリングすることで、ポストホック解釈可能性法を提供することでこの問題に対処している。
本稿では,目的関数に知識を注入することで,モデルの結果に特徴的影響を制御できるマルチクレータ非依存手法を提案する。
論文 参考訳(メタデータ) (2021-11-28T09:41:13Z) - Learning State Representations via Retracing in Reinforcement Learning [25.755855290244103]
リトラシングによる学習は、強化学習タスクの状態表現を学習するための自己指導型アプローチである。
本稿では,Retracingによる学習の具体的なインスタンス化であるCycle-Consistency World Model (CCWM)を紹介する。
CCWMは, 試料効率と性能の両面から, 最先端の性能を実現していることを示す。
論文 参考訳(メタデータ) (2021-11-24T16:19:59Z) - Contrastive Learning for Fair Representations [50.95604482330149]
訓練された分類モデルは、意図せずバイアスのある表現や予測につながる可能性がある。
対戦訓練のような既存の分類モデルのデバイアス化手法は、訓練に高価であり、最適化が困難であることが多い。
比較学習を取り入れたバイアス軽減手法を提案し、同じクラスラベルを共有するインスタンスに類似した表現を推奨する。
論文 参考訳(メタデータ) (2021-09-22T10:47:51Z) - Remembering for the Right Reasons: Explanations Reduce Catastrophic
Forgetting [100.75479161884935]
我々は、RRR(Remembering for the Right Reasons)と呼ばれる新しいトレーニングパラダイムを提案する。
RRRは、各例の視覚モデル説明をバッファに格納し、モデルが予測に「正しい理由」を持つことを保証する。
メモリや正規化ベースのアプローチでRRRを容易に追加できることを示し、その結果、忘れを少なくする。
論文 参考訳(メタデータ) (2020-10-04T10:05:27Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
政治外学習の最近の進歩の上に構築された,概念的にシンプルで,汎用的で,モジュール的な補完的アプローチについて検討する。
このフレームワークは確率論的推論文学のアイデアにインスパイアされ、堅牢な非政治学習と事前の行動を組み合わせる。
提案手法は,メタ強化学習ベースラインと比較して,ホールドアウトタスクにおける競合適応性能を実現し,複雑なスパース・リワードシナリオにスケールすることができる。
論文 参考訳(メタデータ) (2020-09-10T14:16:58Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Continual Learning with Node-Importance based Adaptive Group Sparse
Regularization [30.23319528662881]
AGS-CL(Adaptive Group Sparsity based Continual Learning)と呼ばれる新しい正規化に基づく連続学習手法を提案する。
提案手法は,各ノードが重要度に基づいて学習する際の2つの罰則を選択的に利用し,各タスクを学習した後に適応的に更新する。
論文 参考訳(メタデータ) (2020-03-30T18:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。