論文の概要: Deep incremental learning models for financial temporal tabular datasets
with distribution shifts
- arxiv url: http://arxiv.org/abs/2303.07925v7
- Date: Thu, 10 Aug 2023 13:29:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-11 16:18:07.060745
- Title: Deep incremental learning models for financial temporal tabular datasets
with distribution shifts
- Title(参考訳): 分散シフトを伴う財務時間表表データセットの深層学習モデル
- Authors: Thomas Wong, Mauricio Barahona
- Abstract要約: このフレームワークは、単純な基本的なビルディングブロック(決定木)を使用して、必要な複雑さの自己相似モデルを構築する。
我々は,NumeraiデータセットでトレーニングしたXGBoostモデルを用いて提案手法を実証し,異なるモデルスナップショット上での2層のXGBoostモデルの深部アンサンブルが高品質な予測を提供することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a robust deep incremental learning framework for regression tasks
on financial temporal tabular datasets which is built upon the incremental use
of commonly available tabular and time series prediction models to adapt to
distributional shifts typical of financial datasets. The framework uses a
simple basic building block (decision trees) to build self-similar models of
any required complexity to deliver robust performance under adverse situations
such as regime changes, fat-tailed distributions, and low signal-to-noise
ratios. As a detailed study, we demonstrate our scheme using XGBoost models
trained on the Numerai dataset and show that a two layer deep ensemble of
XGBoost models over different model snapshots delivers high quality predictions
under different market regimes. We also show that the performance of XGBoost
models with different number of boosting rounds in three scenarios (small,
standard and large) is monotonically increasing with respect to model size and
converges towards the generalisation upper bound. We also evaluate the
robustness of the model under variability of different hyperparameters, such as
model complexity and data sampling settings. Our model has low hardware
requirements as no specialised neural architectures are used and each base
model can be independently trained in parallel.
- Abstract(参考訳): 金融データセットに典型的な分布シフトに対応するために,一般利用可能な表型および時系列予測モデルの漸進的利用に基づく,金融時間表型データセットの回帰タスクのための強固な深層学習フレームワークを提案する。
このフレームワークは、単純な基本的なビルディングブロック(決定木)を使用して、必要な複雑さの自己相似モデルを構築し、レジームの変化、ファットテール分布、低信号対ノイズ比などの悪い状況下で堅牢なパフォーマンスを提供する。
本研究では,Numeraiデータセットを用いて学習したXGBoostモデルを用いて,異なるモデルスナップショット上のXGBoostモデルの2層深層アンサンブルが,異なる市場状況下で高品質な予測を提供することを示す。
また, 3つのシナリオ(小, 標準, 大規模)において, ブーイングラウンド数が異なるXGBoostモデルの性能は, モデルサイズに対して単調に増加し, 一般化上限に向かって収束することを示した。
また,モデル複雑性やデータサンプリング設定など,異なるハイパーパラメータの可変性の下でモデルのロバスト性を評価する。
我々のモデルは、特別なニューラルネットワークを使用しず、それぞれのベースモデルを独立して並列にトレーニングできるため、ハードウェア要件が低い。
関連論文リスト
- EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - Recency-Weighted Temporally-Segmented Ensemble for Time-Series Modeling [0.0]
プロセス産業における時系列モデリングは、複雑で多面的で進化するデータ特性を扱うという課題に直面している。
マルチステップ予測のための新しいチャンクベースアプローチであるRecency-Weighted Temporally-Segmented(ReWTS)アンサンブルモデルを導入する。
ノルウェーの排水処理場と飲料水処理場からの2年間のデータをもとに,比較分析を行った。
論文 参考訳(メタデータ) (2024-03-04T16:00:35Z) - The Bayesian Context Trees State Space Model for time series modelling
and forecasting [8.37609145576126]
実数値時系列に対してリッチな混合モデルを開発するための階層的ベイズフレームワークが導入された。
最上位では、有意義な離散状態が、最新のサンプルの適切な定量値として特定される。
下位レベルでは、実数値時系列(ベースモデル)の異なる任意のモデルが各状態と関連付けられている。
論文 参考訳(メタデータ) (2023-08-02T02:40:42Z) - Online learning techniques for prediction of temporal tabular datasets
with regime changes [0.0]
時間パネルデータセットの予測をランキングするモジュール型機械学習パイプラインを提案する。
パイプラインのモジュラリティにより、GBDT(Gradient Boosting Decision Tree)やニューラルネットワークなど、さまざまなモデルの使用が可能になる。
モデルの再トレーニングを必要としないオンライン学習技術は、予測後の結果を高めるために使用することができる。
論文 参考訳(メタデータ) (2022-12-30T17:19:00Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Data Summarization via Bilevel Optimization [48.89977988203108]
シンプルだが強力なアプローチは、小さなサブセットのデータを操作することだ。
本研究では,コアセット選択を基数制約付き双レベル最適化問題として定式化する汎用コアセットフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-26T09:08:38Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
雑音アノテータから基底真理ラベルを学習するための完全ベイズ的枠組みを提案する。
我々のフレームワークは、ラベル分布上の生成的ベイズソフトクラスタリングモデルを古典的なDavidとSkeneのジョイントアノテータデータモデルに分解することでスケーラビリティを保証する。
論文 参考訳(メタデータ) (2021-06-20T02:15:20Z) - Do We Really Need Deep Learning Models for Time Series Forecasting? [4.2698418800007865]
時系列予測は、幅広い応用があるため、機械学習において重要なタスクである。
ディープラーニングとマトリックスファクタリゼーションモデルは、より競争力のあるパフォーマンスで同じ問題に取り組むために最近提案されている。
本稿では,これらの高度に複雑なディープラーニングモデルが代替手段がないかどうかを問う。
論文 参考訳(メタデータ) (2021-01-06T16:18:04Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。