Statistical Mechanics of Monitored Dissipative Random Circuits
- URL: http://arxiv.org/abs/2303.08152v2
- Date: Thu, 12 Oct 2023 15:04:22 GMT
- Title: Statistical Mechanics of Monitored Dissipative Random Circuits
- Authors: Yue Li, Martin Claassen
- Abstract summary: We study the effects of dissipation on a class of monitored random circuits.
We find that the joint action of monitored measurements and dissipation regimes yields short time, intermediate time and steady state behavior.
- Score: 4.0822320577783335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dissipation is inevitable in realistic quantum circuits. We examine the
effects of dissipation on a class of monitored random circuits that exhibit a
measurement-induced entanglement phase transition. This transition has
previously been understood as an order-to-disorder transition of an effective
classical spin model. We extend this mapping to include on-site dissipation
described by the dephasing and spontaneous emission channel and study the
corresponding 2D Ising model with $\mathbb{Z}_2$-symmetry-breaking
interactions. We analyze the dynamical regimes of the mutual information and
find that the joint action of monitored measurements and dissipation yields
short time, intermediate time and steady state behavior that can be understood
in terms of crossovers between different classical domain wall configurations.
The presented analysis applies to monitored open or Lindbladian quantum systems
and provides a tool to understand entanglement dynamics in realistic
dissipative settings and small achievable system sizes.
Related papers
- Unraveling-induced entanglement phase transition in diffusive trajectories of continuously monitored noninteracting fermionic systems [0.0]
We show a transition from a phase with area-law entanglement to one where entanglement scales logarithmically with the system size.
Our findings may be relevant for tailoring quantum correlations in noisy quantum devices.
arXiv Detail & Related papers (2024-06-07T12:08:07Z) - Probing non-equilibrium dissipative phase transitions with trapped-ion
quantum simulators [0.5356944479760104]
Open quantum many-body systems with controllable dissipation can exhibit novel features in their dynamics and steady states.
We show that strong signatures of this dissipative phase transition and its non-equilibrium properties can be observed with a small system size.
Dissipation engineered in this way may allow the simulation of more general types of driven-dissipative systems.
arXiv Detail & Related papers (2023-11-10T17:31:00Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Onset of scrambling as a dynamical transition in tunable-range quantum
circuits [0.0]
We identify a dynamical transition marking the onset of scrambling in quantum circuits with different levels of long-range connectivity.
We show that as a function of the interaction range for circuits of different structures, the tripartite mutual information exhibits a scaling collapse.
In addition to systems with conventional power-law interactions, we identify the same phenomenon in deterministic, sparse circuits.
arXiv Detail & Related papers (2023-04-19T17:37:10Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Exact dynamics in dual-unitary quantum circuits with projective
measurements [0.0]
We introduce a class of models combining dual-unitary circuits with particular projective measurements.
We identify a symmetry preventing a measurement-induced phase transition and present exact results.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Entanglement and charge-sharpening transitions in U(1) symmetric
monitored quantum circuits [1.1968749490556412]
We study how entanglement dynamics in non-unitary quantum circuits can be enriched in the presence of charge conservation.
We uncover a charge-sharpening transition that separates different scrambling phases with volume-law scaling of entanglement.
We find that while R'enyi entropies grow sub-ballistically as $sqrttt$ in the absence of measurement, for even an infinitesimal rate of measurements, all average R'enyi entropies grow ballistically with time.
arXiv Detail & Related papers (2021-07-21T18:00:13Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.