論文の概要: Rice paddy disease classifications using CNNs
- arxiv url: http://arxiv.org/abs/2303.08415v1
- Date: Wed, 15 Mar 2023 07:31:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 14:37:38.118339
- Title: Rice paddy disease classifications using CNNs
- Title(参考訳): CNNを用いた水田病分類
- Authors: Charles O'Neill
- Abstract要約: 米は世界有数の食料であるが、毎年大量の作物の収穫が病気によって失われている。
この問題に対処するため、人々は病気の診断を自動化する方法を模索してきた。
ここでは、モデルアーキテクチャとコンピュータビジョン技術の両方に対して、疾患分類精度がどのように敏感であるかを分析することによって、従来のモデリング作業を拡張した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rice is a staple food in the world's diet, and yet huge percentages of crop
yields are lost each year to disease. To combat this problem, people have been
searching for ways to automate disease diagnosis. Here, we extend on previous
modelling work by analysing how disease-classification accuracy is sensitive to
both model architecture and common computer vision techniques. In doing so, we
maximise accuracy whilst working in the constraints of smaller model sizes,
minimum GPUs and shorter training times. Whilst previous state-of-the-art
models had 93% accuracy only predicting 5 diseases, we improve this to 98.7%
using 10 disease classes.
- Abstract(参考訳): 米は世界の食生活において重要な食物であるが、毎年大量の収穫量が病気で失われている。
この問題に対処するため、人々は病気の診断を自動化する方法を模索してきた。
本稿では,病気分類精度がモデルアーキテクチャと一般的なコンピュータビジョン技術の両方にどのように影響するかを分析することにより,これまでのモデリング作業を拡張する。
これにより、より小さなモデルサイズ、最小のGPU、より短いトレーニング時間の制約に対処しながら、精度を最大化する。
従来の最先端モデルでは93%の精度で5つの疾患を予測できたが、10の病クラスで98.7%に改善した。
関連論文リスト
- Chronic Disease Diagnoses Using Behavioral Data [42.96592744768303]
高血糖(糖尿病)、高脂血症、高血圧(総称3H)を独自の行動データを用いて診断することを目的としている。
論文 参考訳(メタデータ) (2024-10-04T12:52:49Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Advancing Green AI: Efficient and Accurate Lightweight CNNs for Rice Leaf Disease Identification [0.0]
米は世界の人口の半数以上にとって主要な食料源として重要な役割を担っている。
本研究では,イネ葉病分類のための3つの移動型CNNアーキテクチャについて検討した。
最高のパフォーマンスは、99.8%の精度でEfficientNet-B0モデルによって達成された。
論文 参考訳(メタデータ) (2024-08-03T11:16:00Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Transfer Learning With Densenet201 Architecture Model For Potato Leaf
Disease Classification [0.0]
本研究では,DenseNet201アーキテクチャを用いたディープラーニング手法を提案する。
このモデルによる試験結果は、ジャガイモ葉病(92.5%)の分類に新たな精度をもたらした。
論文 参考訳(メタデータ) (2024-01-25T03:58:40Z) - Potato Leaf Disease Classification using Deep Learning: A Convolutional
Neural Network Approach [0.0]
コンボリューショナルニューラルネットワーク(CNN)は、ジャガイモの葉の病気を分類するために用いられる。
CNNモデルは、全体的な精度99.1%であり、2種類のジャガイモの葉の病気を同定するのに非常に正確である。
論文 参考訳(メタデータ) (2023-11-04T07:16:37Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Paddy Leaf diseases identification on Infrared Images based on
Convolutional Neural Networks [0.0]
本稿では、モデルに基づく畳み込みニューラルネットワーク(CNN)を実装し、636個の赤外線画像サンプルからなる公開データセットをテストする。
提案モデルでは5種類の水田病を同定し分類し,88.28%の精度を達成した。
論文 参考訳(メタデータ) (2022-07-29T18:24:29Z) - BERTHop: An Effective Vision-and-Language Model for Chest X-ray Disease
Diagnosis [42.917164607812886]
ヴィジュアル・アンド・ランゲージ(V&L)モデルは、画像とテキストを入力として取り、それら間の関連を捉えることを学ぶ。
BERTHopは、PixelHop++とVisualBERTをベースとしたトランスフォーマーベースのモデルで、2つのモダリティ間の関連をよりよく捉える。
論文 参考訳(メタデータ) (2021-08-10T21:51:25Z) - Method to Classify Skin Lesions using Dermoscopic images [0.0]
皮膚がんは、がん患者の3分の1を構成する既存の世界でもっとも一般的ながんである。
そこで本研究では,CNN(Convolution Neural Networks)をトレーニングモデルとして,皮膚画像を用いた皮膚病変の自動分類モデルを開発した。
このモデルが達成できる最良の精度は0.886である。
論文 参考訳(メタデータ) (2020-08-21T10:58:33Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。