論文の概要: Fair Off-Policy Learning from Observational Data
- arxiv url: http://arxiv.org/abs/2303.08516v2
- Date: Mon, 9 Oct 2023 12:46:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 14:14:49.468953
- Title: Fair Off-Policy Learning from Observational Data
- Title(参考訳): 観測データによる公正なオフポリティ学習
- Authors: Dennis Frauen, Valentyn Melnychuk, Stefan Feuerriegel
- Abstract要約: 我々は、公正な政治学学習のための新しい枠組みを提案する。
まず、政治以外の学習における公平性の概念を定式化する。
次に、異なる公正概念の下で最適なポリシーを学習するためのニューラルネットワークベースのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 30.77874108094485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithmic decision-making in practice must be fair for legal, ethical, and
societal reasons. To achieve this, prior research has contributed various
approaches that ensure fairness in machine learning predictions, while
comparatively little effort has focused on fairness in decision-making,
specifically off-policy learning. In this paper, we propose a novel framework
for fair off-policy learning: we learn decision rules from observational data
under different notions of fairness, where we explicitly assume that
observational data were collected under a different potentially discriminatory
behavioral policy. For this, we first formalize different fairness notions for
off-policy learning. We then propose a neural network-based framework to learn
optimal policies under different fairness notions. We further provide
theoretical guarantees in the form of generalization bounds for the
finite-sample version of our framework. We demonstrate the effectiveness of our
framework through extensive numerical experiments using both simulated and
real-world data. Altogether, our work enables algorithmic decision-making in a
wide array of practical applications where fairness must be ensured.
- Abstract(参考訳): アルゴリズムによる意思決定は、法的、倫理的、社会的理由により公平でなければならない。
これを達成するために、先行研究は機械学習の予測における公正性を保証する様々なアプローチに貢献している。
本稿では、公正性の概念の異なる観察データから意思決定ルールを学習し、観察データが異なる潜在的差別的行動ポリシーの下で収集されたと明確に仮定する、公正でない学習のための新しい枠組みを提案する。
このために、我々はまず、非政治学習のための異なる公正概念を定式化する。
次に、異なる公正概念の下で最適なポリシーを学ぶニューラルネットワークベースのフレームワークを提案する。
さらに、フレームワークの有限サンプルバージョンに対する一般化境界の形での理論的な保証を提供する。
シミュレーションデータと実世界データの両方を用いて, 広範囲な数値実験を行い, フレームワークの有効性を実証する。
全体として,公平性が確保されなければならない幅広い実践的応用において,アルゴリズムによる意思決定を可能にする。
関連論文リスト
- Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
我々は,MARLHF(Multi-Agent Reinforcement Learning from Human Feedback)について検討し,理論的基礎と実証的検証の両方について検討した。
我々は,このタスクを,一般ゲームにおける嗜好のみのオフラインデータセットからナッシュ均衡を識別するものとして定義する。
本研究は,MARLHFの多面的アプローチを基礎として,効果的な嗜好に基づくマルチエージェントシステムの実現を目指している。
論文 参考訳(メタデータ) (2024-09-01T13:14:41Z) - A Benchmark for Fairness-Aware Graph Learning [58.515305543487386]
本稿では,10の代表的な公正性を考慮したグラフ学習手法に関する広範なベンチマークを示す。
我々の詳細な分析は、既存の手法の強みと限界に関する重要な洞察を明らかにしている。
論文 参考訳(メタデータ) (2024-07-16T18:43:43Z) - Privacy for Fairness: Information Obfuscation for Fair Representation
Learning with Local Differential Privacy [26.307780067808565]
本研究では,プライバシと公正性の相互作用を包括的に検証するための理論的枠組みを提案する。
公平な表現学習のための情報ボトルネック(IB)に基づく情報難読化手法(LDP)を開発し,解析する。
MLにおける公平性に関する実証的研究とは対照的に,符号化過程における LDP のランダム化は,学習された表現の公平性を高めることができることを示す。
論文 参考訳(メタデータ) (2024-02-16T06:35:10Z) - Individual Fairness under Uncertainty [26.183244654397477]
アルゴリズムフェアネス(英: Algorithmic Fairness)は、機械学習(ML)アルゴリズムにおいて確立された領域である。
本稿では,クラスラベルの検閲によって生じる不確実性に対処する,個別の公正度尺度とそれに対応するアルゴリズムを提案する。
この視点は、現実世界のアプリケーションデプロイメントにおいて、より現実的なフェアネス研究のモデルである、と我々は主張する。
論文 参考訳(メタデータ) (2023-02-16T01:07:58Z) - Reinforcement Learning with Stepwise Fairness Constraints [50.538878453547966]
本稿では,段階的公正性制約を伴う強化学習について紹介する。
我々は、ポリシーの最適性と公正性違反に関して、強力な理論的保証を持つ学習アルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-11-08T04:06:23Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
対照的な学習を通してテキスト分類のための等化オッズとして知られる公平性の概念を満たす学習公正表現について研究する。
具体的には、まず、公正性制約のある学習表現と条件付き教師付きコントラスト目的との間の関係を理論的に分析する。
論文 参考訳(メタデータ) (2022-05-23T17:38:30Z) - On Learning and Testing of Counterfactual Fairness through Data
Preprocessing [27.674565351048077]
機械学習は実生活における意思決定においてますます重要になっているが、人々は不適切な使用によってもたらされる倫理的問題を懸念している。
最近の研究は、機械学習の公正性に関する議論を因果的枠組みに持ち込み、対実的公正性の概念を精査している。
偏りのあるトレーニングデータから対実的に公正な決定を学習するために,dAta前処理(FLAP)アルゴリズムを用いてフェアラーニングを開発する。
論文 参考訳(メタデータ) (2022-02-25T00:21:46Z) - Fair Representation Learning using Interpolation Enabled Disentanglement [9.043741281011304]
a) 下流タスクに対する学習された表現の有用性を確保しつつ、公平な不整合表現を同時に学べるか、(b) 提案手法が公正かつ正確であるかどうかに関する理論的知見を提供する。
前者に対応するために,補間可能外乱を用いた公正表現学習法FRIEDを提案する。
論文 参考訳(メタデータ) (2021-07-31T17:32:12Z) - Off-Policy Imitation Learning from Observations [78.30794935265425]
観察からの学習(lfo)は、多くのアプリケーションが利用できる実用的な強化学習シナリオである。
オフポリシ最適化を原則的に実現するサンプル効率の高いLfOアプローチを提案する。
我々のアプローチは、サンプル効率と性能の両面で最先端のロコモーションに匹敵する。
論文 参考訳(メタデータ) (2021-02-25T21:33:47Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
グラフにおけるエッジ予測の課題に対する公平性の問題について検討する。
本稿では,任意のグラフの隣接行列に対して,グループと個々の公正性のトレードオフを伴う埋め込み非依存の補修手順を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:33:13Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。