論文の概要: Privacy for Fairness: Information Obfuscation for Fair Representation
Learning with Local Differential Privacy
- arxiv url: http://arxiv.org/abs/2402.10473v1
- Date: Fri, 16 Feb 2024 06:35:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 17:16:51.945390
- Title: Privacy for Fairness: Information Obfuscation for Fair Representation
Learning with Local Differential Privacy
- Title(参考訳): フェアネスのためのプライバシ:ローカル差分プライバシーを用いたフェア表現学習のための情報難読化
- Authors: Songjie Xie, Youlong Wu, Jiaxuan Li, Ming Ding, Khaled B. Letaief
- Abstract要約: 本研究では,プライバシと公正性の相互作用を包括的に検証するための理論的枠組みを提案する。
公平な表現学習のための情報ボトルネック(IB)に基づく情報難読化手法(LDP)を開発し,解析する。
MLにおける公平性に関する実証的研究とは対照的に,符号化過程における LDP のランダム化は,学習された表現の公平性を高めることができることを示す。
- 参考スコア(独自算出の注目度): 26.307780067808565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning (ML) becomes more prevalent in human-centric
applications, there is a growing emphasis on algorithmic fairness and privacy
protection. While previous research has explored these areas as separate
objectives, there is a growing recognition of the complex relationship between
privacy and fairness. However, previous works have primarily focused on
examining the interplay between privacy and fairness through empirical
investigations, with limited attention given to theoretical exploration. This
study aims to bridge this gap by introducing a theoretical framework that
enables a comprehensive examination of their interrelation. We shall develop
and analyze an information bottleneck (IB) based information obfuscation method
with local differential privacy (LDP) for fair representation learning. In
contrast to many empirical studies on fairness in ML, we show that the
incorporation of LDP randomizers during the encoding process can enhance the
fairness of the learned representation. Our analysis will demonstrate that the
disclosure of sensitive information is constrained by the privacy budget of the
LDP randomizer, thereby enabling the optimization process within the IB
framework to effectively suppress sensitive information while preserving the
desired utility through obfuscation. Based on the proposed method, we further
develop a variational representation encoding approach that simultaneously
achieves fairness and LDP. Our variational encoding approach offers practical
advantages. It is trained using a non-adversarial method and does not require
the introduction of any variational prior. Extensive experiments will be
presented to validate our theoretical results and demonstrate the ability of
our proposed approach to achieve both LDP and fairness while preserving
adequate utility.
- Abstract(参考訳): 機械学習(ML)が人間中心のアプリケーションで普及するにつれ、アルゴリズムの公正性とプライバシ保護に重点が置かれている。
これまでの研究では、これらの領域を別々の目的として研究してきたが、プライバシとフェアネスの複雑な関係に対する認識が高まっている。
しかし、以前の研究は主に経験的調査を通じてプライバシーと公正の間の相互作用を検証し、理論的な探究に限定された注意を払っている。
本研究は,相互関係の包括的検証を可能にする理論的枠組みを導入することにより,このギャップを埋めることを目的とする。
公平な表現学習のための情報ボトルネック(IB)に基づく情報難読化手法(LDP)を開発し,解析する。
MLにおける公平性に関する実証的研究とは対照的に,符号化過程における LDP のランダム化は,学習された表現の公平性を高めることができることを示す。
分析の結果, 機密情報の開示は LDP ランダム化器のプライバシ予算に制約されていることが明らかとなり, IB フレームワーク内での最適化プロセスにより, 難読化による情報保護を効果的に行うことが可能となる。
提案手法に基づいて,フェアネスとLDPを同時に実現する変分表現符号化手法をさらに発展させる。
我々の変分符号化アプローチは実用的な利点をもたらす。
非逆法で訓練されており、いかなる変分前の導入も必要としない。
理論結果を検証し,適切な有効性を維持しつつ,ldpと公平性の両方を達成するための提案手法の能力を示すために,広範な実験を行う。
関連論文リスト
- Data Obfuscation through Latent Space Projection (LSP) for Privacy-Preserving AI Governance: Case Studies in Medical Diagnosis and Finance Fraud Detection [0.0]
本稿では、AIガバナンスの強化と、責任あるAIコンプライアンスの確保を目的とした、新しい技術であるLSP(Data Obfuscation through Latent Space Projection)を紹介する。
LSPは機械学習を使用して、機密データを潜在空間に投影し、モデルトレーニングと推論に不可欠な機能を保ちながら効果的に難読化する。
LSPの有効性は、ベンチマークデータセットの実験と、医療がん診断と金融詐欺分析の2つの実世界のケーススタディを通じて検証する。
論文 参考訳(メタデータ) (2024-10-22T22:31:03Z) - A Comprehensive Survey on Evidential Deep Learning and Its Applications [64.83473301188138]
Evidential Deep Learning (EDL)は、単一のフォワードパスで最小限の追加計算で信頼性の高い不確実性推定を提供する。
まず、主観的論理理論であるEDLの理論的基礎を掘り下げ、他の不確実性推定フレームワークとの区別について議論する。
さまざまな機械学習パラダイムや下流タスクにまたがる広範な応用について詳しく述べる。
論文 参考訳(メタデータ) (2024-09-07T05:55:06Z) - Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
既存のメソッドは通常、ターゲットテキストを分離して分析するか、非メンバーコンテキストでのみ分析する。
Con-ReCallは、メンバと非メンバのコンテキストによって誘導される非対称な分布シフトを利用する新しいアプローチである。
論文 参考訳(メタデータ) (2024-09-05T09:10:38Z) - A Multivocal Literature Review on Privacy and Fairness in Federated Learning [1.6124402884077915]
フェデレーション学習は、データ共有の必要性を排除することによって、AIアプリケーションに革命をもたらす手段を提供する。
最近の研究では、プライバシと公平性の間に固有の緊張が示されています。
プライバシーと公正性の関係は無視され、現実世界のアプリケーションにとって重大なリスクをもたらしている、と我々は主張する。
論文 参考訳(メタデータ) (2024-08-16T11:15:52Z) - On the Impact of Multi-dimensional Local Differential Privacy on
Fairness [5.237044436478256]
偏差プライバシー(LDP)が不公平性に与える影響について検討した。
特に、多次元 LDP は格差を減らすための効率的なアプローチである。
本研究は,実践者の効果的なプライバシ保護プラクティスの実践を指導するための勧告の形で要約した。
論文 参考訳(メタデータ) (2023-12-07T16:17:34Z) - Fair Off-Policy Learning from Observational Data [30.77874108094485]
我々は、公正な政治学学習のための新しい枠組みを提案する。
まず、政治以外の学習における公平性の概念を定式化する。
次に、異なる公正概念の下で最適なポリシーを学習するためのニューラルネットワークベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-15T10:47:48Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Fair Representation Learning using Interpolation Enabled Disentanglement [9.043741281011304]
a) 下流タスクに対する学習された表現の有用性を確保しつつ、公平な不整合表現を同時に学べるか、(b) 提案手法が公正かつ正確であるかどうかに関する理論的知見を提供する。
前者に対応するために,補間可能外乱を用いた公正表現学習法FRIEDを提案する。
論文 参考訳(メタデータ) (2021-07-31T17:32:12Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z) - Differentially Private and Fair Deep Learning: A Lagrangian Dual
Approach [54.32266555843765]
本稿では,個人の機密情報のプライバシを保護するとともに,非差別的予測器の学習を可能にするモデルについて検討する。
この方法は、微分プライバシーの概念と、公正性制約を満たすニューラルネットワークの設計にラグランジアン双対性(Lagrangian duality)を用いることに依存している。
論文 参考訳(メタデータ) (2020-09-26T10:50:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。