論文の概要: Human Reaction Intensity Estimation with Ensemble of Multi-task Networks
- arxiv url: http://arxiv.org/abs/2303.09240v1
- Date: Thu, 16 Mar 2023 11:35:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-17 15:50:03.138324
- Title: Human Reaction Intensity Estimation with Ensemble of Multi-task Networks
- Title(参考訳): マルチタスクネットワークのアンサンブルによる人間の反応強度推定
- Authors: JiYeon Oh, Daun Kim, Jae-Yeop Jeong, Yeong-Gi Hong, Jin-Woo Jeong
- Abstract要約: 感情反応強度(ERI)は,表情認識タスクにおいて重要な話題である。
本研究では,第5回感情行動分析(ABAW)コンペティションで導入されたERI課題に対して,マルチ感情型タスク学習に基づくアプローチを提案する。
- 参考スコア(独自算出の注目度): 2.6432771146480283
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Facial expression in-the-wild is essential for various interactive computing
domains. Especially, "Emotional Reaction Intensity" (ERI) is an important topic
in the facial expression recognition task. In this paper, we propose a
multi-emotional task learning-based approach and present preliminary results
for the ERI challenge introduced in the 5th affective behavior analysis
in-the-wild (ABAW) competition. Our method achieved the mean PCC score of
0.3254.
- Abstract(参考訳): 様々な対話型コンピューティングドメインでは,実地での表情が不可欠である。
特に「感情反応強度」(eri)は表情認識タスクにおいて重要な話題である。
本稿では,多感情型タスク学習に基づくアプローチを提案し,第5回感情行動分析(ABAW)コンペティションで導入されたERI課題の予備的結果を示す。
平均PCCスコアは0.3254。
関連論文リスト
- GPT as Psychologist? Preliminary Evaluations for GPT-4V on Visual Affective Computing [74.68232970965595]
MLLM(Multimodal large language model)は、テキスト、音声、画像、ビデオなどの複数のソースからの情報を処理し、統合するように設計されている。
本稿では、視覚的情緒的タスクと推論タスクにまたがる5つの重要な能力を持つMLLMの適用性を評価する。
論文 参考訳(メタデータ) (2024-03-09T13:56:25Z) - The 6th Affective Behavior Analysis in-the-wild (ABAW) Competition [53.718777420180395]
本稿では,第6回ABAWコンペティションについて述べる。
第6回ABAWコンペティションは、人間の感情や行動を理解する上での現代の課題に対処する。
論文 参考訳(メタデータ) (2024-02-29T16:49:38Z) - Multimodal Feature Extraction and Fusion for Emotional Reaction
Intensity Estimation and Expression Classification in Videos with
Transformers [47.16005553291036]
我々は,野生(ABAW)2023における2つの影響行動分析のサブチャレンジに対して,その解決策を提示する。
表現分類チャレンジでは,分類の課題を効果的に処理する合理化アプローチを提案する。
これらの特徴を研究、分析、組み合わせることで、マルチモーダルコンテキストにおける感情予測のためのモデルの精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-03-16T09:03:17Z) - ABAW: Valence-Arousal Estimation, Expression Recognition, Action Unit
Detection & Emotional Reaction Intensity Estimation Challenges [62.413819189049946]
5th Affective Behavior Analysis in-the-Wild(ABAW)コンペティションは、IEEE Computer Vision and Pattern Recognition Conference(CVPR)と共同で開催される各ABAWワークショップの一部である。
今年のコンペティションでは、Aff-Wild2データベースの拡張バージョンとHume-Reactionデータセットの2つのコーパスが特徴です。
後者のデータセットは、感情的刺激に対する個人の反応が7つの感情的表現強度に対して注釈付けされている聴覚的データセットである。
論文 参考訳(メタデータ) (2023-03-02T18:58:15Z) - Multi-task Cross Attention Network in Facial Behavior Analysis [7.910908058662372]
本研究は, 実環境における感情行動分析におけるマルチタスク学習の課題に対する解決策を提案する。
課題は、アクション単位の検出、表情認識、および原子価-覚醒推定の3つのタスクの組み合わせである。
マルチタスク学習性能向上のためのクロスアテンテートモジュールを提案する。
論文 参考訳(メタデータ) (2022-07-21T04:07:07Z) - Learning from Synthetic Data: Facial Expression Classification based on
Ensemble of Multi-task Networks [3.736069053271373]
表情認識タスクにおいて,「合成データからの学習」 (LSD) は重要なトピックである。
マルチタスク学習に基づく顔認識手法を提案する。
平均F1スコアは0.71。
論文 参考訳(メタデータ) (2022-07-20T16:41:37Z) - Prior Aided Streaming Network for Multi-task Affective Recognitionat the
2nd ABAW2 Competition [9.188777864190204]
我々は第2回ABAW2コンペティション(ABAW2コンペティション)に応募する。
異なる感情表現を扱う際に,マルチタスク・ストリーミング・ネットワークを提案する。
我々は、先行知識として高度な表情埋め込みを活用している。
論文 参考訳(メタデータ) (2021-07-08T09:35:08Z) - Computational Emotion Analysis From Images: Recent Advances and Future
Directions [79.05003998727103]
本章では,画像感情分析(IEA)を計算的観点から導入することを目的としている。
心理学の一般的な感情表現モデルから始めます。
そして、研究者たちが解決しようとしている重要な計算問題を定義します。
論文 参考訳(メタデータ) (2021-03-19T13:33:34Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。