論文の概要: Mpox-AISM: AI-Mediated Super Monitoring for Mpox and Like-Mpox
- arxiv url: http://arxiv.org/abs/2303.09780v4
- Date: Sun, 16 Jun 2024 02:24:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 13:20:03.808798
- Title: Mpox-AISM: AI-Mediated Super Monitoring for Mpox and Like-Mpox
- Title(参考訳): Mpox-AISM: AIによるMpoxとLike-Mpoxのスーパーモニタリング
- Authors: Yubiao Yue, Minghua Jiang, Xinyue Zhang, Jialong Xu, Huacong Ye, Fan Zhang, Zhenzhang Li, Yang Li,
- Abstract要約: スーパーモニタリング」は人工知能(AI)とインターネット技術を用いたリアルタイム可視化技術である。
mpox-AISMは、ディープラーニングモデル、データ拡張、自己教師型学習、クラウドサービスを統合している。
ポックスの診断では94.51%の精度で6種類の同種皮膚障害、正常な皮膚を診断する。
- 参考スコア(独自算出の注目度): 7.381293390784665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Swift and accurate diagnosis for earlier-stage monkeypox (mpox) patients is crucial to avoiding its spread. However, the similarities between common skin disorders and mpox and the need for professional diagnosis unavoidably impaired the diagnosis of earlier-stage mpox patients and contributed to mpox outbreak. To address the challenge, we proposed "Super Monitoring", a real-time visualization technique employing artificial intelligence (AI) and Internet technology to diagnose earlier-stage mpox cheaply, conveniently, and quickly. Concretely, AI-mediated "Super Monitoring" (mpox-AISM) integrates deep learning models, data augmentation, self-supervised learning, and cloud services. According to publicly accessible datasets, mpox-AISM's Precision, Recall, Specificity, and F1-score in diagnosing mpox reach 99.3%, 94.1%, 99.9%, and 96.6%, respectively, and it achieves 94.51% accuracy in diagnosing mpox, six like-mpox skin disorders, and normal skin. With the Internet and communication terminal, mpox-AISM has the potential to perform real-time and accurate diagnosis for earlier-stage mpox in real-world scenarios, thereby preventing mpox outbreak.
- Abstract(参考訳): 早期サルポックス(mpox)患者のスイフトと正確な診断は、その拡散を避けるために不可欠である。
しかし、一般的な皮膚疾患とmpoxとの類似性や専門的診断の必要性は、早期のmpox患者の診断を必然的に損なうことになり、mpoxの発生に寄与した。
この課題に対処するため,我々は,人工知能(AI)とインターネット技術を用いたリアルタイム可視化技術である"Super Monitoring"を提案した。
具体的には、AIによる"Super Monitoring"(mpox-AISM)は、ディープラーニングモデル、データ拡張、自己教師型学習、クラウドサービスを統合している。
一般にアクセス可能なデータセットによると、mpox-AISMの精密度、リコール、特異度、F1スコアは、それぞれ99.3%、94.1%、99.9%、96.6%に達し、mpoxの診断において94.51%の精度を達成している。
インターネットと通信端末により、mpox-AISMは、実際のシナリオにおいて、早期のmpoxのリアルタイムかつ正確な診断を行う可能性があり、mpoxの発生を防止できる。
関連論文リスト
- Mpox Screen Lite: AI-Driven On-Device Offline Mpox Screening for Low-Resource African Mpox Emergency Response [0.0]
2024年のMpoxの流行は、特にアフリカで重篤な1bの出現で、資源制限された環境での診断能力に重大なギャップが浮き彫りになっている。
本研究の目的は、低リソース環境でオフラインで動作するように設計されたMpox用のAI駆動オンデバイススクリーニングツールの開発と評価である。
論文 参考訳(メタデータ) (2024-09-05T11:18:34Z) - Parkinson's Disease Detection through Vocal Biomarkers and Advanced
Machine Learning Algorithms [0.0]
本研究は早期疾患予測の手段として, PD患者の声質変化の可能性について検討した。
XGBoost、LightGBM、Baging、AdaBoost、Support Vector Machineなど、さまざまな高度な機械学習アルゴリズムを活用する。
LightGBMは、100%の感度と94.43%の特異性を示し、他の機械学習アルゴリズムの精度とAUCスコアを上回った。
論文 参考訳(メタデータ) (2023-11-09T15:21:10Z) - Entropy-based machine learning model for diagnosis and monitoring of
Parkinson's Disease in smart IoT environment [0.0]
Fuzzy Entropy は rs-EEG を用いたPD の診断とモニタリングにおいて最善を尽くした。
機能が少ないため,最大分類精度(ARKF)は99.9%であった。
低いパフォーマンスのスマートMLセンサはIoT環境で使用することができ、PDに対する人間のレジリエンスを高めることができる。
論文 参考訳(メタデータ) (2023-08-28T08:20:57Z) - Ultrafast-and-Ultralight ConvNet-Based Intelligent Monitoring System for Diagnosing Early-Stage Mpox Anytime and Anywhere [4.393125661498784]
Fast-MpoxNetはわずか0.27Mパラメータで、CPU上の68フレーム毎秒(FPS)で入力画像を処理できる。
Mpox-AISM V2は、迅速に正確にmpoxを診断でき、公共のリアルタイムmpox診断サービスを提供するために、様々なシナリオに容易に展開できる。
論文 参考訳(メタデータ) (2023-08-25T17:06:30Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGliomaは人工知能に基づく診断スクリーニングシステムである。
ディープグリオーマは、世界保健機関が成人型びまん性グリオーマ分類を定義するために使用する分子変化を予測することができる。
論文 参考訳(メタデータ) (2023-03-23T18:50:18Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
胸部X線撮影は、COVID-19の代替スクリーニング方法です。
コンピュータ支援診断(CAD)は低コストで高速で実現可能であることが証明されている。
この課題に対処するために,インプリント重みという低ショット学習手法を提案する。
論文 参考訳(メタデータ) (2021-05-04T19:01:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
放射線モデルは、グリオ芽腫(GBM)の結果予測のための臨床データを上回ることが示されています。
GBM患者の生存率(OS),IDH変異,O-6-メチルグアニン-DNA-メチルトランスフェラーゼ(MGMT)プロモーターメチル化,EGFR(EGFR)VII増幅,Ki-67発現の9種類の機械学習分類器を比較した。
xgb は os (74.5%), ab for idh 変異 (88%), mgmt メチル化 (71,7%), ki-67 発現 (86,6%), egfr増幅 (81。
論文 参考訳(メタデータ) (2021-02-10T15:10:37Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
胸部CT(Central Computed Tomography)において,地域肺炎(CAP)からCOVID-19を自動診断するデュアルサンプリングアテンションネットワークを開発した。
特に,3D畳み込みネットワーク(CNN)を用いた新しいオンラインアテンションモジュールを提案する。
我々のアルゴリズムは、受信機動作特性曲線(AUC)値0.944、精度87.5%、感度86.9%、特異度90.1%、F1スコア82.0%の領域で、COVID-19画像を識別することができる。
論文 参考訳(メタデータ) (2020-05-06T09:56:51Z) - COVID-CAPS: A Capsule Network-based Framework for Identification of
COVID-19 cases from X-ray Images [34.93885932923011]
コロナウイルス(COVID-19)は、21世紀の2世紀末に、突然、そして間違いなく世界を変えた。
新型コロナウイルスの早期診断により、医療専門家や政府機関は移行の連鎖を破り、流行曲線をフラットにすることができる。
主に畳み込みニューラルネットワーク(CNN)をベースとしたディープニューラルネットワーク(DNN)ベースの診断ソリューション開発への関心が高まっている。
本稿では、小さなデータセットを処理可能な、Capsule Networks(COVID-CAPS)に基づく代替モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-06T14:20:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。