論文の概要: Mpox Screen Lite: AI-Driven On-Device Offline Mpox Screening for Low-Resource African Mpox Emergency Response
- arxiv url: http://arxiv.org/abs/2409.03806v1
- Date: Thu, 5 Sep 2024 11:18:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 17:50:10.770294
- Title: Mpox Screen Lite: AI-Driven On-Device Offline Mpox Screening for Low-Resource African Mpox Emergency Response
- Title(参考訳): Mpox Screen Lite: 電源の低いアフリカのMpox緊急対応のための、AI駆動のオフラインMpoxスクリーニング
- Authors: Yudara Kularathne, Prathapa Janitha, Sithira Ambepitiya,
- Abstract要約: 2024年のMpoxの流行は、特にアフリカで重篤な1bの出現で、資源制限された環境での診断能力に重大なギャップが浮き彫りになっている。
本研究の目的は、低リソース環境でオフラインで動作するように設計されたMpox用のAI駆動オンデバイススクリーニングツールの開発と評価である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Background: The 2024 Mpox outbreak, particularly severe in Africa with clade 1b emergence, has highlighted critical gaps in diagnostic capabilities in resource-limited settings. This study aimed to develop and validate an artificial intelligence (AI)-driven, on-device screening tool for Mpox, designed to function offline in low-resource environments. Methods: We developed a YOLOv8n-based deep learning model trained on 2,700 images (900 each of Mpox, other skin conditions, and normal skin), including synthetic data. The model was validated on 360 images and tested on 540 images. A larger external validation was conducted using 1,500 independent images. Performance metrics included accuracy, precision, recall, F1-score, sensitivity, and specificity. Findings: The model demonstrated high accuracy (96%) in the final test set. For Mpox detection, it achieved 93% precision, 97% recall, and an F1-score of 95%. Sensitivity and specificity for Mpox detection were 97% and 96%, respectively. Performance remained consistent in the larger external validation, confirming the model's robustness and generalizability. Interpretation: This AI-driven screening tool offers a rapid, accurate, and scalable solution for Mpox detection in resource-constrained settings. Its offline functionality and high performance across diverse datasets suggest significant potential for improving Mpox surveillance and management, particularly in areas lacking traditional diagnostic infrastructure.
- Abstract(参考訳): 背景: 2024年のMpoxの流行は、特にアフリカで重篤な1bの出現で、リソース制限設定における診断能力の重大なギャップを浮き彫りにした。
本研究の目的は、低リソース環境でオフラインで動作するように設計されたMpox用のAI駆動オンデバイススクリーニングツールの開発と評価である。
方法: 合成データを含む2,700枚の画像(Mpox, その他の皮膚条件, 正常皮膚)で学習したYOLOv8nに基づく深層学習モデルを開発した。
モデルは360度画像で検証され、540枚の画像でテストされた。
1500個の独立した画像を用いて、より大きな外部検証を行った。
パフォーマンス指標には精度、精度、リコール、F1スコア、感度、特異性があった。
結果: 最終テストセットでは, モデルが高い精度(96%)を示した。
Mpox検出では93%の精度、97%のリコール、95%のF1スコアを達成した。
Mpox検出の感度と特異性はそれぞれ97%,96%であった。
性能はより大きな外部検証において一貫しており、モデルの堅牢性と一般化性を確認した。
解釈: このAI駆動スクリーニングツールは、リソース制約のある環境でのMpox検出の迅速で正確でスケーラブルなソリューションを提供する。
オフライン機能と多様なデータセットにわたるハイパフォーマンスは、特に従来の診断インフラが欠如している領域において、Mpoxの監視と管理を改善する大きな可能性を示唆している。
関連論文リスト
- Attention Based Feature Fusion Network for Monkeypox Skin Lesion Detection [0.09642500063568188]
最近のサルポックスの流行は公衆衛生に重大な懸念をもたらしている。
深層学習アルゴリズムは、新型コロナウイルス(COVID-19)を含む病気の特定に利用できる。
本稿では,ヒトサルポックス病を分類するために,事前学習した2つのアーキテクチャをマージする軽量モデルを提案する。
論文 参考訳(メタデータ) (2024-08-13T05:21:03Z) - Accessible, At-Home Detection of Parkinson's Disease via Multi-task Video Analysis [3.1851272788128644]
既存のAIベースのパーキンソン病検出方法は、主にモータや音声タスクの単調な分析に焦点を当てている。
本稿では,このマルチモーダルデータを利用して診断精度を向上させる不確実性校正核融合ネットワーク(UFNet)を提案する。
UFNetは、精度、ORC曲線下(AUROC)の面積、非隣接特異性を維持しながら感度において、シングルタスクモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-06-21T04:02:19Z) - Enhancing Diagnostic Reliability of Foundation Model with Uncertainty Estimation in OCT Images [41.002573031087856]
光コヒーレンストモグラフィー(OCT)における11個の網膜状態を検出するために,不確実性推定(FMUE)を用いた基礎モデルを開発した。
FMUEは2つの最先端アルゴリズムであるRETFoundとUIOSよりも96.76%高いF1スコアを獲得し、しきい値戦略を98.44%に改善した。
我々のモデルは、F1スコアが高い2人の眼科医(95.17%対61.93% &71.72%)より優れている。
論文 参考訳(メタデータ) (2024-06-18T03:04:52Z) - Reconstruction of Patient-Specific Confounders in AI-based Radiologic
Image Interpretation using Generative Pretraining [12.656718786788758]
本稿では,DiffChestと呼ばれる自己条件拡散モデルを提案し,胸部X線画像のデータセット上で訓練する。
DiffChest氏は、患者固有のレベルでの分類を説明し、モデルを誤解させる可能性のある要因を視覚化する。
本研究は,医用画像分類における拡散モデルに基づく事前訓練の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-09-29T10:38:08Z) - Uncertainty-inspired Open Set Learning for Retinal Anomaly
Identification [71.06194656633447]
9つの網膜条件の基底像をトレーニングし,不確実性に着想を得たオープンセット(UIOS)モデルを構築した。
しきい値戦略を持つUIOSモデルはF1スコア99.55%、97.01%、91.91%を達成した。
UIOSは、高い不確実性スコアを正しく予測し、非ターゲットの網膜疾患、低品質の眼底画像、および非基本画像のデータセットを手動でチェックする必要があることを示唆した。
論文 参考訳(メタデータ) (2023-04-08T10:47:41Z) - Mpox-AISM: AI-Mediated Super Monitoring for Mpox and Like-Mpox [7.381293390784665]
スーパーモニタリング」は人工知能(AI)とインターネット技術を用いたリアルタイム可視化技術である。
mpox-AISMは、ディープラーニングモデル、データ拡張、自己教師型学習、クラウドサービスを統合している。
ポックスの診断では94.51%の精度で6種類の同種皮膚障害、正常な皮膚を診断する。
論文 参考訳(メタデータ) (2023-03-17T05:27:16Z) - Advancing Radiograph Representation Learning with Masked Record Modeling [52.04899592688968]
我々は2つの相補的な目的として自己と報告の補完を定式化し、マスク付きレコードモデリング(MRM)に基づく統一的な枠組みを提案する。
MRMは、知識強化されたセマンティック表現を学ぶためのマルチタスクスキームに従って、マスクされた画像パッチとマスクされたレポートトークンを再構築する。
具体的には、MRMはラベル効率の良い微調整において優れた性能を提供する。
論文 参考訳(メタデータ) (2023-01-30T18:33:32Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。