論文の概要: Short: Basal-Adjust: Trend Prediction Alerts and Adjusted Basal Rates
for Hyperglycemia Prevention
- arxiv url: http://arxiv.org/abs/2303.09913v1
- Date: Thu, 16 Mar 2023 17:04:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-20 14:54:03.663397
- Title: Short: Basal-Adjust: Trend Prediction Alerts and Adjusted Basal Rates
for Hyperglycemia Prevention
- Title(参考訳): short: basal-adjust:高血糖予防のためのトレンド予測警告とベースレート調整
- Authors: Chloe Smith, Maxfield Kouzel, Xugui Zhou, Homa Alemzadeh
- Abstract要約: 現在、安全でない血糖値のタイムリーな治療には、経過が存在している。
予測的BGシナリオ分類のための機械学習(ML)手法を提案する。
予測低血糖と高血糖の標準通知に加えて,BGシナリオ固有の警告メッセージも導入した。
- 参考スコア(独自算出の注目度): 1.858151490268935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant advancements in type 1 diabetes treatment have been made in the
development of state-of-the-art Artificial Pancreas Systems (APS). However,
lapses currently exist in the timely treatment of unsafe blood glucose (BG)
levels, especially in the case of rebound hyperglycemia. We propose a machine
learning (ML) method for predictive BG scenario categorization that outputs
messages alerting the patient to upcoming BG trends to allow for earlier,
educated treatment. In addition to standard notifications of predicted
hypoglycemia and hyperglycemia, we introduce BG scenario-specific alert
messages and the preliminary steps toward precise basal suggestions for the
prevention of rebound hyperglycemia. Experimental evaluation on the DCLP3
clinical dataset achieves >98% accuracy and >79% precision for predicting
rebound high events for patient alerts.
- Abstract(参考訳): 1型糖尿病治療の顕著な進歩は、最先端の人工膵システム(APS)の開発に寄与している。
しかし、現在、非安全な血糖値(BG)のタイムリーな治療、特にリバウンド高血糖の場合は、経過が存在している。
本稿では,BGの予測シナリオ分類のための機械学習(ML)手法を提案する。
予測される低血糖と高血糖の標準的な通知に加えて,BGシナリオ特異的な警告メッセージの導入と,リバウンド高血糖予防のための正確な基礎的提案の事前手順も紹介する。
DCLP3臨床データセットの実験的評価は、患者アラートに対するリバウンドの高い事象を予測するために、98%の精度と79%の精度を達成する。
関連論文リスト
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Automatic Prediction of Amyotrophic Lateral Sclerosis Progression using Longitudinal Speech Transformer [56.17737749551133]
ニューラルネットワークを用いたALS病進行自動予測器であるALS長手音声変換器(ALST)を提案する。
録音における高品質な事前訓練音声特徴と長手情報を活用することで、最良のモデルが91.0%のAUCを達成できる。
ALSTはALS進行の細粒度で解釈可能な予測が可能で、特に稀な症例と重篤な症例の区別が可能である。
論文 参考訳(メタデータ) (2024-06-26T13:28:24Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - A novel solution of deep learning for enhanced support vector machine
for predicting the onset of type 2 diabetes [32.25039205521283]
本研究の目的は,2型糖尿病の発症予測に要する処理時間を改善しつつ,AUC(Area Under the Curve)測定値の精度と精度を向上させることである。
提案手法は平均精度86.31 %、平均AUC値は0.8270 %または82.70 %であり、処理は3.8ミリ秒改善されている。
論文 参考訳(メタデータ) (2022-08-05T18:15:40Z) - Taming Overconfident Prediction on Unlabeled Data from Hindsight [50.9088560433925]
ラベルのないデータに対する予測の不確実性を最小化することは、半教師付き学習において優れた性能を達成するための鍵となる要素である。
本稿では,アダプティブシャーニング(Adaptive Sharpening, ADS)と呼ばれる2つのメカニズムを提案する。
ADSは、プラグインにすることで最先端のSSLメソッドを大幅に改善する。
論文 参考訳(メタデータ) (2021-12-15T15:17:02Z) - Stacked LSTM Based Deep Recurrent Neural Network with Kalman Smoothing
for Blood Glucose Prediction [4.040272012640556]
本研究では,長期長期記憶(LSTM)に基づく深部再発ニューラルネットワーク(RNN)モデルを用いた血糖値予測手法を提案する。
6人の異なる患者の8週間のデータを含むOttoT1DMデータセットでは、平均RMSEは6.45と17.24mg/dlを30分60分予測水平線(PH)で達成している。
以上の結果から,t1d糖尿病管理のための人工膵およびインスリン注入システムの性能向上を期待できる,より信頼性の高いbg予測が可能と考えられた。
論文 参考訳(メタデータ) (2021-01-18T02:31:38Z) - Prediction-Coherent LSTM-based Recurrent Neural Network for Safer
Glucose Predictions in Diabetic People [4.692400531340393]
本稿では,予測の安定性を高めるLSTMに基づくリカレントニューラルネットワークアーキテクチャと損失関数を提案する。
研究は1型と2型糖尿病患者を対象に行われ、30分前の予測に焦点をあてた。
論文 参考訳(メタデータ) (2020-09-08T13:14:08Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。