Estimating Coherent Contributions to the Error Profile Using Cycle Error Reconstruction
- URL: http://arxiv.org/abs/2303.09945v3
- Date: Thu, 30 May 2024 13:51:45 GMT
- Title: Estimating Coherent Contributions to the Error Profile Using Cycle Error Reconstruction
- Authors: Arnaud Carignan-Dugas, Shashank Kumar Ranu, Patrick Dreher,
- Abstract summary: We present a scalable and cycle-centric methodology for obtaining a detailed estimate of the coherent contribution to the error profile of a hard computing cycle.
We perform proof-of-concept experiments on three IBM chips, namely ibmq_guadalupe, ibmq_manila, and ibmq_montreal.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Mitigation and calibration schemes are central to maximize the computational reach of today's Noisy Intermediate Scale Quantum (NISQ) hardware, but these schemes are often specialized to exclusively address either coherent or decoherent error sources. Quantifying the two types of errors hence constitutes a desirable feature when it comes to benchmarking error suppression tools. In this paper, we present a scalable and cycle-centric methodology for obtaining a detailed estimate of the coherent contribution to the error profile of a hard computing cycle. The protocol that we suggest is based on Cycle Error Reconstruction (CER), also known as K-body Noise Reconstruction (KNR). This protocol is similar to Cycle Benchmarking (CB) in that it provides a cycle-centric diagnostic based on Pauli fidelity estimation [1]. We introduce an additional hyper-parameter in CER by allowing the hard cycles to be folded multiple times before being subject to Pauli twirling. Performing CER for different values of our added hyper-parameter allows estimating the coherent error contributions through a generalization of the fidelity decay formula. We confirm the accuracy of our method through numerical simulations on a quantum simulator, and perform proof-of-concept experiments on three IBM chips, namely ibmq_guadalupe, ibmq_manila, and ibmq_montreal. In all three experiments, we measure substantial coherent errors biased in Z.
Related papers
- Pauli Check Extrapolation for Quantum Error Mitigation [8.436934066461625]
Pauli Check Extrapolation (PCE) integrates PCS with an extrapolation technique similar to Zero-Noise Extrapolation (ZNE)
We show that PCE can achieve higher fidelities than the state-of-the-art Robust Shadow (RS) estimation scheme.
arXiv Detail & Related papers (2024-06-20T22:07:42Z) - Correcting phenomenological quantum noise via belief propagation [7.469588051458094]
Quantum stabilizer codes often face the challenge of syndrome errors due to error-prone measurements.
In this paper, we consider phenomenological decoding problems, where data qubit errors may occur between two syndrome extractions.
We propose a method to construct effective redundant stabilizer checks for single-shot error correction.
arXiv Detail & Related papers (2023-10-19T12:23:05Z) - The Error Reconstruction and Compiled Calibration of Quantum Computing
Cycles [0.0]
Quantum computers are inhibited by physical errors that occur during computation.
Error characterization and error suppression techniques are central to the progress of quantum computing.
arXiv Detail & Related papers (2023-03-30T21:23:58Z) - Concepts and conditions for error suppression through randomized
compiling [0.0]
We show that randomized compiling alters errors in three distinct helpful ways.
It prevents the coherent accumulation of errors across gate cycles by destroying intercycle coherent correlations.
It converts individual gate cycle errors into Pauli noise.
arXiv Detail & Related papers (2022-12-14T20:45:28Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
Canonical discrete quantum error correction (DQEC) schemes use projective von Neumann measurements on stabilizers to discretize the error syndromes into a finite set.
Quantum error correction (QEC) based on continuous measurement, known as continuous quantum error correction (CQEC), can be executed faster than DQEC and can also be resource efficient.
We show that by constructing a measurement-based estimator (MBE) of the logical qubit to be protected, it is possible to accurately track the errors occurring on the physical qubits in real time.
arXiv Detail & Related papers (2022-03-25T09:07:18Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Fundamental thresholds of realistic quantum error correction circuits
from classical spin models [0.0]
We use Monte-Carlo simulations to study the resulting phase diagram of the associated interacting spin model.
The presented method provides an avenue to assess the fundamental thresholds of QEC codes and associated readout circuitry, independent of specific decoding strategies.
arXiv Detail & Related papers (2021-04-10T19:26:37Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.