論文の概要: An Adaptive Fuzzy Reinforcement Learning Cooperative Approach for the
Autonomous Control of Flock Systems
- arxiv url: http://arxiv.org/abs/2303.09946v1
- Date: Fri, 17 Mar 2023 13:07:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-20 14:46:10.011828
- Title: An Adaptive Fuzzy Reinforcement Learning Cooperative Approach for the
Autonomous Control of Flock Systems
- Title(参考訳): 適応型ファジィ強化学習協調手法によるFlockシステムの自律制御
- Authors: Shuzheng Qu, Mohammed Abouheaf, Wail Gueaieb, and Davide Spinello
- Abstract要約: この研究は、群集システムの自律制御に適応的な分散ロバスト性技術を導入している。
比較的柔軟な構造は、様々な目的を同時に狙うオンラインファジィ強化学習スキームに基づいている。
動的障害に直面した場合のレジリエンスに加えて、アルゴリズムはフィードバック信号としてエージェントの位置以上のものを必要としない。
- 参考スコア(独自算出の注目度): 4.961066282705832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The flock-guidance problem enjoys a challenging structure where multiple
optimization objectives are solved simultaneously. This usually necessitates
different control approaches to tackle various objectives, such as guidance,
collision avoidance, and cohesion. The guidance schemes, in particular, have
long suffered from complex tracking-error dynamics. Furthermore, techniques
that are based on linear feedback strategies obtained at equilibrium conditions
either may not hold or degrade when applied to uncertain dynamic environments.
Pre-tuned fuzzy inference architectures lack robustness under such unmodeled
conditions. This work introduces an adaptive distributed technique for the
autonomous control of flock systems. Its relatively flexible structure is based
on online fuzzy reinforcement learning schemes which simultaneously target a
number of objectives; namely, following a leader, avoiding collision, and
reaching a flock velocity consensus. In addition to its resilience in the face
of dynamic disturbances, the algorithm does not require more than the agent
position as a feedback signal. The effectiveness of the proposed method is
validated with two simulation scenarios and benchmarked against a similar
technique from the literature.
- Abstract(参考訳): 群集誘導問題は、複数の最適化目的を同時に解決する難しい構造を享受する。
これは通常、誘導、衝突回避、凝集など様々な目的に取り組むための異なる制御アプローチを必要とする。
特にガイダンススキームは、トラッキングエラーの複雑なダイナミクスに長年苦しめられている。
さらに、平衡条件で得られる線形フィードバック戦略に基づく手法は、不確定な動的環境に適用しても保持または劣化しない。
事前調整されたファジィ推論アーキテクチャは、そのような非モデル化条件下での堅牢性に欠ける。
本研究は,群集システムの自律制御のための適応分散手法を導入する。
その比較的柔軟な構造は、オンラインファジィ強化学習スキームに基づいており、同時に、リーダーのフォロー、衝突の回避、群集速度のコンセンサスに達するなど、多くの目標を目標としている。
動的障害に直面した場合のレジリエンスに加えて、アルゴリズムはフィードバック信号としてエージェントの位置以上のものを必要としない。
提案手法の有効性を2つのシミュレーションシナリオで検証し,同様の手法に対するベンチマークを行った。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Online Nonstochastic Model-Free Reinforcement Learning [35.377261344335736]
本研究では,動的あるいは敵対的な環境に対するロバストモデルロバスト性保証について検討する。
これらのポリシーを最適化するための効率的かつ効率的なアルゴリズムを提供する。
これらは状態空間に依存せず、状態空間に依存しない最もよく知られた発展である。
論文 参考訳(メタデータ) (2023-05-27T19:02:55Z) - A Policy Iteration Approach for Flock Motion Control [5.419608513284392]
全体的な制御プロセスは、群れの粘着性と局在性を監視しながらエージェントを誘導する。
ここでは、独立したコマンドジェネレータに従うためにエージェント群を誘導するために、オンラインモデルフリーのポリシーイテレーションメカニズムが開発されている。
政策反復機構のシミュレーション結果から,計算労力の少ない高速学習と収束挙動が明らかになった。
論文 参考訳(メタデータ) (2023-03-17T15:04:57Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
本稿では,学習物理シミュレーションにおける線形運動量を保証する新しい手法を提案する。
我々は、強い制約で運動量の保存を強制し、反対称的な連続的な畳み込み層を通して実現する。
提案手法により,学習シミュレータの物理的精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-10-12T09:12:59Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - Adaptive Robust Model Predictive Control with Matched and Unmatched
Uncertainty [28.10549712956161]
離散時間系のダイナミクスにおける大きな不確実性を扱うことができる学習ベースの堅牢な予測制御アルゴリズムを提案する。
既存の学習に基づく予測制御アルゴリズムが大規模な不確実性が存在する場合の安全性を確保することができず、性能が大幅に向上する。
論文 参考訳(メタデータ) (2021-04-16T17:47:02Z) - Trajectory Tracking of Underactuated Sea Vessels With Uncertain
Dynamics: An Integral Reinforcement Learning Approach [2.064612766965483]
積分強化学習に基づくオンライン機械学習メカニズムを提案し,非線形追跡問題のクラスに対する解を求める。
このソリューションは、適応的批評家と勾配降下アプローチを用いて実現されるオンライン価値反復プロセスを用いて実装される。
論文 参考訳(メタデータ) (2021-04-01T01:41:49Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。