論文の概要: GPTs are GPTs: An Early Look at the Labor Market Impact Potential of
Large Language Models
- arxiv url: http://arxiv.org/abs/2303.10130v2
- Date: Mon, 20 Mar 2023 02:29:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 11:22:55.909023
- Title: GPTs are GPTs: An Early Look at the Labor Market Impact Potential of
Large Language Models
- Title(参考訳): GPTはGPTである:大規模言語モデルの労働市場影響の早期調査
- Authors: Tyna Eloundou, Sam Manning, Pamela Mishkin, Daniel Rock
- Abstract要約: ジェネレーティブ・プレトレーニング・トランスフォーマー(GPT)は、経済的、社会的、政策的な意味を持つ可能性がある。
アメリカの労働力の約80%は、GPTの導入によって影響を受ける仕事の少なくとも10%を担っていた。
- 参考スコア(独自算出の注目度): 0.40964539027092917
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We investigate the potential implications of Generative Pre-trained
Transformer (GPT) models and related technologies on the U.S. labor market.
Using a new rubric, we assess occupations based on their correspondence with
GPT capabilities, incorporating both human expertise and classifications from
GPT-4. Our findings indicate that approximately 80% of the U.S. workforce could
have at least 10% of their work tasks affected by the introduction of GPTs,
while around 19% of workers may see at least 50% of their tasks impacted. The
influence spans all wage levels, with higher-income jobs potentially facing
greater exposure. Notably, the impact is not limited to industries with higher
recent productivity growth. We conclude that Generative Pre-trained
Transformers exhibit characteristics of general-purpose technologies (GPTs),
suggesting that as these models could have notable economic, social, and policy
implications.
- Abstract(参考訳): 本稿では,米国労働市場におけるGPTモデルとその関連技術の可能性について検討する。
新たなルーブリックを用いて,GPT-4の専門知識と分類の両面を取り入れ,GPT機能との対応に基づく職業評価を行った。
その結果、米国の労働力の約80%は、GPTの導入によって影響を受ける仕事の少なくとも10%を、労働者の約19%は、その仕事の少なくとも50%が影響を受けていることがわかった。
この影響は全ての賃金水準に及んでおり、高所得の雇用はより大きな露出に直面する可能性がある。
特にこの影響は、最近の生産性が向上している業界に限ったものではない。
我々は,ジェネレーティブ・プレトレーニングトランスが汎用技術(gpts)の特徴を示し,これらのモデルが経済的,社会的,政策的な意味を持つ可能性を示唆する。
関連論文リスト
- WALL-E: World Alignment by Rule Learning Improves World Model-based LLM Agents [55.64361927346957]
大規模言語モデル(LLM)による規則の勾配なし学習のためのニューロシンボリックアプローチを提案する。
我々のLLMエージェントWALL-Eはモデル予測制御(MPC)上に構築されている
MinecraftとALFWorldにおけるオープンワールドの課題について、WALL-Eは既存の方法よりも高い成功率を達成する。
論文 参考訳(メタデータ) (2024-10-09T23:37:36Z) - Transforming Scholarly Landscapes: Influence of Large Language Models on Academic Fields beyond Computer Science [77.31665252336157]
大規模言語モデル (LLM) は自然言語処理 (NLP) において転換期を迎えた。
本研究は,NLP以外の分野におけるLLMの影響と利用について実験的に検討する。
論文 参考訳(メタデータ) (2024-09-29T01:32:35Z) - Beyond ChatGPT: Enhancing Software Quality Assurance Tasks with Diverse LLMs and Validation Techniques [14.230480872339463]
本稿では,複数の大規模言語モデル(LLM)が2つのSQAタスク(障害局所化と脆弱性検出)にまたがる機能について検討する。
LLMの結果を組み合わせる投票機構を実装することで,両タスクにおいてGPT-3.5よりも10%以上の改善を実現した。
このアプローチにより、障害のローカライゼーションが16%、脆弱性検出が12%、GPT-3.5が4%向上した。
論文 参考訳(メタデータ) (2024-09-02T07:26:19Z) - Enhancing Discriminative Tasks by Guiding the Pre-trained Language Model with Large Language Model's Experience [4.814313782484443]
大規模言語モデル (LLM) と事前訓練型言語モデル (LM) は多くのソフトウェア工学のタスクにおいて驚くべき成功を収めた。
我々は、LLMを用いてドメイン固有のデータを生成し、目標タスクにおける事前学習されたLMの性能を向上させる。
論文 参考訳(メタデータ) (2024-08-16T06:37:59Z) - Are Large Language Models Good Statisticians? [10.42853117200315]
StatQAは統計解析タスク用に設計された新しいベンチマークである。
GPT-4oのような最先端モデルでさえ、64.83%の最高の性能を実現していることを示す。
オープンソースのLLMは限られた能力を示すが、細調整されたものは顕著に改善されている。
論文 参考訳(メタデータ) (2024-06-12T02:23:51Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
オープンソースのLarge Language Models(LLM)の普及は、包括的な評価方法の緊急の必要性を強調している。
我々は不確実性定量化を統合した LLM のための新しいベンチマーク手法を提案する。
以上の結果より, 精度の高いLSMでは, 精度が低下する可能性があり, II) より大規模なLSMでは, より小型のLSMに比べて不確実性が高いこと, III) 命令ファインタニングではLCMの不確実性が高くなる傾向が示唆された。
論文 参考訳(メタデータ) (2024-01-23T14:29:17Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - Fairness of ChatGPT and the Role Of Explainable-Guided Prompts [6.079011829257036]
本研究では,大規模言語モデル(LLM),特に OpenAI の GPT の信用リスク評価における可能性について検討する。
この結果から,LLMは従来の機械学習(ML)モデルの性能を並列化できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-14T09:20:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。