論文の概要: Fairness of ChatGPT and the Role Of Explainable-Guided Prompts
- arxiv url: http://arxiv.org/abs/2307.11761v1
- Date: Fri, 14 Jul 2023 09:20:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-30 04:27:20.719007
- Title: Fairness of ChatGPT and the Role Of Explainable-Guided Prompts
- Title(参考訳): ChatGPTの公正性と説明可能なプロンプトの役割
- Authors: Yashar Deldjoo
- Abstract要約: 本研究では,大規模言語モデル(LLM),特に OpenAI の GPT の信用リスク評価における可能性について検討する。
この結果から,LLMは従来の機械学習(ML)モデルの性能を並列化できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 6.079011829257036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our research investigates the potential of Large-scale Language Models
(LLMs), specifically OpenAI's GPT, in credit risk assessment-a binary
classification task. Our findings suggest that LLMs, when directed by
judiciously designed prompts and supplemented with domain-specific knowledge,
can parallel the performance of traditional Machine Learning (ML) models.
Intriguingly, they achieve this with significantly less data-40 times less,
utilizing merely 20 data points compared to the ML's 800. LLMs particularly
excel in minimizing false positives and enhancing fairness, both being vital
aspects of risk analysis. While our results did not surpass those of classical
ML models, they underscore the potential of LLMs in analogous tasks, laying a
groundwork for future explorations into harnessing the capabilities of LLMs in
diverse ML tasks.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM),特に OpenAI の GPT の信用リスク評価における可能性について検討する。
この結果から,LLMは従来の機械学習(ML)モデルの性能を並列化できる可能性が示唆された。
興味深いことに、MLの800に対して20のデータポイントしか利用せず、データ-40倍の差でこれを実現する。
LLMは特に偽陽性の最小化と公正性の向上に優れており、どちらもリスク分析の重要な側面である。
研究結果は従来のMLモデルを上回るものではなかったが、類似タスクにおけるLLMの可能性を強調し、多様なMLタスクにおいてLLMの能力を活用するための今後の研究の基盤を築き上げた。
関連論文リスト
- Large Language Models as Reliable Knowledge Bases? [60.25969380388974]
大きな言語モデル(LLM)は潜在的な知識ベース(KB)と見なすことができる。
本研究は、信頼性の高いLLM-as-KBが満たすべき基準を定義し、事実性と一貫性に焦点をあてる。
ICLや微調整のような戦略は、LLMをより良くKBにするには失敗している。
論文 参考訳(メタデータ) (2024-07-18T15:20:18Z) - Are Large Language Models Good Statisticians? [10.42853117200315]
StatQAは統計解析タスク用に設計された新しいベンチマークである。
GPT-4oのような最先端モデルでさえ、64.83%の最高の性能を実現していることを示す。
オープンソースのLLMは限られた能力を示すが、細調整されたものは顕著に改善されている。
論文 参考訳(メタデータ) (2024-06-12T02:23:51Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Human Still Wins over LLM: An Empirical Study of Active Learning on
Domain-Specific Annotation Tasks [37.56584999012332]
小さなモデルは数百のラベル付きデータでGPT-3.5より優れており、数百倍小さいにもかかわらずGPT-4よりも高いまたは類似した性能を達成できる。
これらの結果から,LLM予測は実世界のアプリケーションにおけるウォームアップ手法として利用できると仮定した。
論文 参考訳(メタデータ) (2023-11-16T11:51:13Z) - Are Large Language Models Reliable Judges? A Study on the Factuality
Evaluation Capabilities of LLMs [8.526956860672698]
大きな言語モデル(LLM)は、その顕著な能力のために注目を集めている。
本研究では,テキスト生成モデルにより生成された要約における事実整合性の信頼性評価としてのLCMの可能性について検討する。
論文 参考訳(メタデータ) (2023-11-01T17:42:45Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。