論文の概要: Are Large Language Models Good Statisticians?
- arxiv url: http://arxiv.org/abs/2406.07815v2
- Date: Thu, 10 Oct 2024 06:01:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:29:36.613955
- Title: Are Large Language Models Good Statisticians?
- Title(参考訳): 大規模言語モデルは良い統計学者か?
- Authors: Yizhang Zhu, Shiyin Du, Boyan Li, Yuyu Luo, Nan Tang,
- Abstract要約: StatQAは統計解析タスク用に設計された新しいベンチマークである。
GPT-4oのような最先端モデルでさえ、64.83%の最高の性能を実現していることを示す。
オープンソースのLLMは限られた能力を示すが、細調整されたものは顕著に改善されている。
- 参考スコア(独自算出の注目度): 10.42853117200315
- License:
- Abstract: Large Language Models (LLMs) have demonstrated impressive capabilities across a range of scientific tasks including mathematics, physics, and chemistry. Despite their successes, the effectiveness of LLMs in handling complex statistical tasks remains systematically under-explored. To bridge this gap, we introduce StatQA, a new benchmark designed for statistical analysis tasks. StatQA comprises 11,623 examples tailored to evaluate LLMs' proficiency in specialized statistical tasks and their applicability assessment capabilities, particularly for hypothesis testing methods. We systematically experiment with representative LLMs using various prompting strategies and show that even state-of-the-art models such as GPT-4o achieve a best performance of only 64.83%, indicating significant room for improvement. Notably, while open-source LLMs (e.g. LLaMA-3) show limited capability, those fine-tuned ones exhibit marked improvements, outperforming all in-context learning-based methods (e.g. GPT-4o). Moreover, our comparative human experiments highlight a striking contrast in error types between LLMs and humans: LLMs primarily make applicability errors, whereas humans mostly make statistical task confusion errors. This divergence highlights distinct areas of proficiency and deficiency, suggesting that combining LLM and human expertise could lead to complementary strengths, inviting further investigation into their collaborative potential. Our source code and data are available at https://statqa.github.io/.
- Abstract(参考訳): 大規模言語モデル(LLM)は、数学、物理学、化学など、様々な科学的なタスクにおいて印象的な能力を示している。
それらの成功にもかかわらず、複雑な統計タスクの処理におけるLLMの有効性は体系的に過小評価されている。
このギャップを埋めるために、統計解析タスク用に設計された新しいベンチマークであるStatQAを導入する。
StatQAは、特殊統計タスクにおけるLLMの習熟度とその適用性評価能力、特に仮説テスト法に適合した11,623の例で構成されている。
GPT-4o のような最先端モデルでさえ,64.83% で最高の性能を示し,改善の余地があることが示唆された。
特に、オープンソースのLLM(e g LLaMA-3)は限られた能力を示すが、それらの微調整されたものは顕著に改善され、すべての文脈内学習法(e g GPT-4o)よりも優れていた。
さらに、我々の比較人間実験では、LLMと人間のエラータイプに顕著なコントラストが示されています。
このばらつきは、LLMと人間の専門知識を組み合わせることで相補的な強みを導き、彼らの協力的な可能性についてさらなる研究を促すことを示唆している。
ソースコードとデータはhttps://statqa.github.io/で公開されています。
関連論文リスト
- Towards Reasoning Ability of Small Language Models [3.732224317444325]
我々は,小言語モデル (SLM) が競争力のある推論性能を実現できることを示す。
14の推論ベンチマークで6つのモデルファミリーから72のSLMを体系的に調査し、ベンチマークし、分析した。
我々の発見は、スケーリングが強力な推論を達成する唯一の方法である、という仮定に挑戦する。
論文 参考訳(メタデータ) (2025-02-17T08:59:16Z) - The Alternative Annotator Test for LLM-as-a-Judge: How to Statistically Justify Replacing Human Annotators with LLMs [21.97227334180969]
LLM-as-a-judge"パラダイムでは、人間が伝統的に行ってきたタスクにおいて、アノテータや評価役としてLarge Language Modelsを採用している。
研究結果や洞察を形成する上での役割にもかかわらず、LLMがヒトのアノテーターを置き換えることができるかどうかを判断するための標準的あるいは厳格な手順は存在しない。
LLMアノテーションの使用を正当化するためには、アノテーション付き例の控えめなサブセットだけを必要とする新しい統計手順である代替アノテーションテスト(alt-test)を提案する。
論文 参考訳(メタデータ) (2025-01-19T07:09:11Z) - What Makes In-context Learning Effective for Mathematical Reasoning: A Theoretical Analysis [81.15503859645149]
本稿では,大規模言語モデルの推論性能に及ぼす文脈内実演の影響を理論的に解析することを目的とする。
本稿では, LMS3 という, 単純で一般化可能な, 低複雑さな実演選択法を提案する。
論文 参考訳(メタデータ) (2024-12-11T11:38:11Z) - A Multi-LLM Debiasing Framework [85.17156744155915]
大規模言語モデル(LLM)は、社会に多大な利益をもたらす可能性がある強力なツールであるが、社会的不平等を持続するバイアスを示す。
近年,マルチLLM手法への関心が高まっており,推論の質向上に有効であることが示されている。
LLMのバイアス低減を目的としたマルチLLMデバイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T20:24:50Z) - Evaluation and Improvement of Fault Detection for Large Language Models [30.760472387136954]
本稿では,大規模言語モデル(LLM)における既存の故障検出手法の有効性について検討する。
既存の手法の故障検出能力を高めるために, textbfMutation による予測を行う textbfConfidence textbfSmoothing フレームワーク textbfMuCS を提案する。
論文 参考訳(メタデータ) (2024-04-14T07:06:12Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
評価の結果、スケーリング、トレーニングタイプ、アーキテクチャなどの要因がLLMのパフォーマンスに大きな影響を与えていることが明らかになった。
本研究は, これらのLCMの徹底的な再検討に着手し, 現状評価手法における不整合性に着目した。
これには、ANOVA、Tukey HSDテスト、GAMM、クラスタリング技術などが含まれる。
論文 参考訳(メタデータ) (2024-03-22T14:47:35Z) - Are Large Language Models Reliable Judges? A Study on the Factuality
Evaluation Capabilities of LLMs [8.526956860672698]
大きな言語モデル(LLM)は、その顕著な能力のために注目を集めている。
本研究では,テキスト生成モデルにより生成された要約における事実整合性の信頼性評価としてのLCMの可能性について検討する。
論文 参考訳(メタデータ) (2023-11-01T17:42:45Z) - Fairness of ChatGPT and the Role Of Explainable-Guided Prompts [6.079011829257036]
本研究では,大規模言語モデル(LLM),特に OpenAI の GPT の信用リスク評価における可能性について検討する。
この結果から,LLMは従来の機械学習(ML)モデルの性能を並列化できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-14T09:20:16Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
抽象的な要約のための自動評価器として,大規模言語モデル(LLM)の安定性と信頼性について検討する。
また、ChatGPTとGPT-4は、一般的に使われている自動測定値よりも優れていますが、人間の代替品として準備ができていません。
論文 参考訳(メタデータ) (2023-05-22T14:58:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。