Clifford-based Circuit Cutting for Quantum Simulation
- URL: http://arxiv.org/abs/2303.10788v1
- Date: Sun, 19 Mar 2023 22:56:02 GMT
- Title: Clifford-based Circuit Cutting for Quantum Simulation
- Authors: Kaitlin N. Smith, Michael A. Perlin, Pranav Gokhale, Paige Frederick,
David Owusu-Antwi, Richard Rines, Victory Omole, Frederic T. Chong
- Abstract summary: We debut Super.tech's SuperSim framework, a new approach for high fidelity and scalable quantum circuit simulation.
SuperSim employs two key techniques for accelerated quantum circuit simulation: Clifford-based simulation and circuit cutting.
Our results show that Clifford-based circuit cutting accelerates the simulation of near-Clifford circuits, allowing 100s of qubits to be evaluated with modest runtimes.
- Score: 2.964626695457492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing has potential to provide exponential speedups over
classical computing for many important applications. However, today's quantum
computers are in their early stages, and hardware quality issues hinder the
scale of program execution. Benchmarking and simulation of quantum circuits on
classical computers is therefore essential to advance the understanding of how
quantum computers and programs operate, enabling both algorithm discovery that
leads to high-impact quantum computation and engineering improvements that
deliver to more powerful quantum systems. Unfortunately, the nature of quantum
information causes simulation complexity to scale exponentially with problem
size. In this paper, we debut Super.tech's SuperSim framework, a new approach
for high fidelity and scalable quantum circuit simulation. SuperSim employs two
key techniques for accelerated quantum circuit simulation: Clifford-based
simulation and circuit cutting. Through the isolation of Clifford subcircuit
fragments within a larger non-Clifford circuit, resource-efficient Clifford
simulation can be invoked, leading to significant reductions in runtime. After
fragments are independently executed, circuit cutting and recombination
procedures allow the final output of the original circuit to be reconstructed
from fragment execution results. Through the combination of these two
state-of-art techniques, SuperSim is a product for quantum practitioners that
allows quantum circuit evaluation to scale beyond the frontiers of current
simulators. Our results show that Clifford-based circuit cutting accelerates
the simulation of near-Clifford circuits, allowing 100s of qubits to be
evaluated with modest runtimes.
Related papers
- QuCLEAR: Clifford Extraction and Absorption for Significant Reduction in Quantum Circuit Size [8.043057448895343]
Currently available quantum devices suffer from noisy quantum gates, which degrade the fidelity of executed quantum circuits.
We present QuCLEAR, a compilation framework designed to optimize quantum circuits.
arXiv Detail & Related papers (2024-08-23T18:03:57Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - A Reorder Trick for Decision Diagram Based Quantum Circuit Simulation [0.4358626952482686]
We study two classes of quantum circuits on which the state-of-the-art decision diagram based simulators failed to perform well in terms of simulation time.
We propose a simple and powerful reorder trick to boost the simulation of such quantum circuits.
arXiv Detail & Related papers (2022-11-14T04:55:25Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - CutQC: Using Small Quantum Computers for Large Quantum Circuit
Evaluations [18.78105450344374]
This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers.
CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices.
In real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers.
arXiv Detail & Related papers (2020-12-03T23:52:04Z) - Faster Schr\"odinger-style simulation of quantum circuits [2.0940228639403156]
Recent demonstrations of superconducting quantum computers by Google and IBM fueled new research in quantum algorithms.
We advance Schr"odinger-style simulation of quantum circuits that is useful standalone and as a building block in layered simulation algorithms.
arXiv Detail & Related papers (2020-08-01T08:47:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.