Hospitalization Length of Stay Prediction using Patient Event Sequences
- URL: http://arxiv.org/abs/2303.11042v1
- Date: Mon, 20 Mar 2023 11:48:36 GMT
- Title: Hospitalization Length of Stay Prediction using Patient Event Sequences
- Authors: Emil Riis Hansen, Thomas Dyhre Nielsen, Thomas Mulvad, Mads Nibe
Strausholm, Tomer Sagi, Katja Hose
- Abstract summary: This paper proposes a novel approach for predicting hospital length of stay (LOS) by modeling patient information as sequences of events.
We present a transformer-based model, termed Medic-BERT (M-BERT), for LOS prediction using the unique features describing patients medical event sequences.
Experimental results show that M-BERT can achieve high accuracy on a variety of LOS problems and outperforms traditional nonsequence-based machine learning approaches.
- Score: 4.204781617630707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting patients hospital length of stay (LOS) is essential for improving
resource allocation and supporting decision-making in healthcare organizations.
This paper proposes a novel approach for predicting LOS by modeling patient
information as sequences of events. Specifically, we present a
transformer-based model, termed Medic-BERT (M-BERT), for LOS prediction using
the unique features describing patients medical event sequences. We performed
empirical experiments on a cohort of more than 45k emergency care patients from
a large Danish hospital. Experimental results show that M-BERT can achieve high
accuracy on a variety of LOS problems and outperforms traditional
nonsequence-based machine learning approaches.
Related papers
- Predicting 30-Day Hospital Readmission in Medicare Patients: Insights from an LSTM Deep Learning Model [4.918444397807014]
This study analyzes Medicare hospital readmissions using LSTM networks with feature engineering to assess feature contributions.
The LSTM model is designed to capture temporal dynamics from admission-level and patient-level data.
The major features were the Charlson Comorbidity Index, hospital length of stay, the hospital admissions over the past 6 months, while demographic variables were less impactful.
arXiv Detail & Related papers (2024-10-23T03:50:32Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - An Interpretable Deep-Learning Framework for Predicting Hospital
Readmissions From Electronic Health Records [2.156208381257605]
We propose a novel, interpretable deep-learning framework for predicting unplanned hospital readmissions.
We validate our system on the two predictive tasks of hospital readmission within 30 and 180 days, using real-world data.
arXiv Detail & Related papers (2023-10-16T08:48:52Z) - CPLLM: Clinical Prediction with Large Language Models [0.07083082555458872]
We present a method that involves fine-tuning a pre-trained Large Language Model (LLM) for clinical disease and readmission prediction.
For diagnosis prediction, we predict whether patients will be diagnosed with a target disease during their next visit or in the subsequent diagnosis, leveraging their historical diagnosis records.
Our experiments have shown that our proposed method, CPLLM, surpasses all the tested models in terms of PR-AUC and ROC-AUC metrics.
arXiv Detail & Related papers (2023-09-20T13:24:12Z) - Assessing the impact of emergency department short stay units using
length-of-stay prediction and discrete event simulation [1.0822676139724565]
We aim to build a decision support system that predicts hospital length-of-stay for patients admitted to general internal medicine from the emergency department.
We conduct an exploratory data analysis and employ feature selection methods to identify the attributes that result in the best predictive performance.
arXiv Detail & Related papers (2023-08-04T22:26:02Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - MedGPT: Medical Concept Prediction from Clinical Narratives [0.23488056916440858]
Temporal modelling of a patient's medical history can be used to predict future events.
We present MedGPT, a novel transformer-based pipeline that uses Named Entity Recognition and Linking tools.
We show that our model captures medical knowledge by testing it on an experimental medical multiple choice question answering task.
arXiv Detail & Related papers (2021-07-07T10:36:28Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.