Predicting 30-Day Hospital Readmission in Medicare Patients: Insights from an LSTM Deep Learning Model
- URL: http://arxiv.org/abs/2410.17545v1
- Date: Wed, 23 Oct 2024 03:50:32 GMT
- Title: Predicting 30-Day Hospital Readmission in Medicare Patients: Insights from an LSTM Deep Learning Model
- Authors: Xintao Li, Sibei Liu, Dezhi Yu, Yang Zhang, Xiaoyu Liu,
- Abstract summary: This study analyzes Medicare hospital readmissions using LSTM networks with feature engineering to assess feature contributions.
The LSTM model is designed to capture temporal dynamics from admission-level and patient-level data.
The major features were the Charlson Comorbidity Index, hospital length of stay, the hospital admissions over the past 6 months, while demographic variables were less impactful.
- Score: 4.918444397807014
- License:
- Abstract: Readmissions among Medicare beneficiaries are a major problem for the US healthcare system from a perspective of both healthcare operations and patient caregiving outcomes. Our study analyzes Medicare hospital readmissions using LSTM networks with feature engineering to assess feature contributions. We selected variables from admission-level data, inpatient medical history and patient demography. The LSTM model is designed to capture temporal dynamics from admission-level and patient-level data. On a case study on the MIMIC dataset, the LSTM model outperformed the logistic regression baseline, accurately leveraging temporal features to predict readmission. The major features were the Charlson Comorbidity Index, hospital length of stay, the hospital admissions over the past 6 months, while demographic variables were less impactful. This work suggests that LSTM networks offers a more promising approach to improve Medicare patient readmission prediction. It captures temporal interactions in patient databases, enhancing current prediction models for healthcare providers. Adoption of predictive models into clinical practice may be more effective in identifying Medicare patients to provide early and targeted interventions to improve patient outcomes.
Related papers
- An Interpretable Deep-Learning Framework for Predicting Hospital
Readmissions From Electronic Health Records [2.156208381257605]
We propose a novel, interpretable deep-learning framework for predicting unplanned hospital readmissions.
We validate our system on the two predictive tasks of hospital readmission within 30 and 180 days, using real-world data.
arXiv Detail & Related papers (2023-10-16T08:48:52Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Hospitalization Length of Stay Prediction using Patient Event Sequences [4.204781617630707]
This paper proposes a novel approach for predicting hospital length of stay (LOS) by modeling patient information as sequences of events.
We present a transformer-based model, termed Medic-BERT (M-BERT), for LOS prediction using the unique features describing patients medical event sequences.
Experimental results show that M-BERT can achieve high accuracy on a variety of LOS problems and outperforms traditional nonsequence-based machine learning approaches.
arXiv Detail & Related papers (2023-03-20T11:48:36Z) - Advances in Prediction of Readmission Rates Using Long Term Short Term
Memory Networks on Healthcare Insurance Data [1.454498931674109]
30-day hospital readmission is a long standing medical problem that affects patients' morbidity and mortality and costs billions of dollars annually.
We developed a bi-directional Long Short Term Memory (LSTM) Network that is able to use readily available insurance data.
Our results demonstrate that a machine learning model is able to predict risk of inpatient readmission with reasonable accuracy for all patients.
arXiv Detail & Related papers (2022-06-30T19:07:10Z) - Towards Trustworthy Cross-patient Model Development [3.109478324371548]
We study differences in model performance and explainability when trained for all patients and one patient at a time.
The results show that patients' demographics has a large impact on the performance and explainability and thus trustworthiness.
arXiv Detail & Related papers (2021-12-20T10:51:04Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Predicting Patient Outcomes with Graph Representation Learning [0.47248250311484113]
We propose to exploit diagnoses as temporal information by connecting similar patients in a graph.
We demonstrate that LSTM-GNNs outperform the LSTM-only baseline on length of stay prediction tasks on the eICU database.
arXiv Detail & Related papers (2021-01-11T15:04:07Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.