Quantum Signal Processing, Phase Extraction, and Proportional Sampling
- URL: http://arxiv.org/abs/2303.11077v1
- Date: Mon, 20 Mar 2023 13:05:29 GMT
- Title: Quantum Signal Processing, Phase Extraction, and Proportional Sampling
- Authors: Lorenzo Laneve
- Abstract summary: Quantum Signal Processing (QSP) is a technique that can be used to implement a transformation $P(x)$ applied to the eigenvalues of a unitary $U$.
We show that QSP can be used to tackle a new problem, which we call phase extraction, and that this can be used to provide quantum speed-up for proportional sampling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Signal Processing (QSP) is a technique that can be used to implement
a polynomial transformation $P(x)$ applied to the eigenvalues of a unitary $U$,
essentially implementing the operation $P(U)$, provided that $P$ satisfies some
conditions that are easy to satisfy. A rich class of previously known quantum
algorithms were shown to be derived or reduced to this technique or one of its
extensions. In this work, we show that QSP can be used to tackle a new problem,
which we call phase extraction, and that this can be used to provide quantum
speed-up for proportional sampling, a problem of interest in machine-learning
applications and quantum state preparation. We show that, for certain sampling
distributions, our algorithm provides an almost-quadratic speed-up over
classical sampling procedures. Then we extend the result by constructing a
sequence of algorithms that increasingly relax the dependence on the space of
elements to sample.
Related papers
- Halving the Cost of Quantum Algorithms with Randomization [0.138120109831448]
Quantum signal processing (QSP) provides a systematic framework for implementing a transformation of a linear operator.
Recent works have developed randomized compiling, a technique that promotes a unitary gate to a quantum channel.
Our algorithm implements a probabilistic mixture of randomizeds, strategically chosen so that the average evolution converges to that of a target function, with an error quadratically smaller than that of an equivalent individual.
arXiv Detail & Related papers (2024-09-05T17:56:51Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Generalized Quantum Signal Processing [0.6768558752130311]
We present a Generalized Quantum Signal Processing approach, employing general SU(2) rotations as our signal processing operators.
Our approach lifts all practical restrictions on the family of achievable transformations, with the sole remaining condition being that $|P|leq 1$.
In cases where only $P$ is known, we provide an efficient GPU optimization capable of identifying in under a minute of time, a corresponding $Q$ for degree on the order of $107$.
arXiv Detail & Related papers (2023-08-03T01:51:52Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
We analyze and optimize an improved quantum algorithm for topological data analysis.
We show that super-quadratic quantum speedups are only possible when targeting a multiplicative error approximation.
We argue that quantum circuits with tens of billions of Toffoli can solve seemingly classically intractable instances.
arXiv Detail & Related papers (2022-09-27T17:56:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Gradient-descent quantum process tomography by learning Kraus operators [63.69764116066747]
We perform quantum process tomography (QPT) for both discrete- and continuous-variable quantum systems.
We use a constrained gradient-descent (GD) approach on the so-called Stiefel manifold during optimization to obtain the Kraus operators.
The GD-QPT matches the performance of both compressed-sensing (CS) and projected least-squares (PLS) QPT in benchmarks with two-qubit random processes.
arXiv Detail & Related papers (2022-08-01T12:48:48Z) - Commutation simulator for open quantum dynamics [0.0]
We propose an innovative method to investigate directly the properties of a time-dependent density operator $hatrho(t)$.
We can directly compute the expectation value of the commutation relation and thus of the rate of change of $hatrho(t)$.
A simple but important example is demonstrated in the single-qubit case and we discuss extension of the method for practical quantum simulation with many qubits.
arXiv Detail & Related papers (2022-06-01T16:03:43Z) - An optimal quantum sampling regression algorithm for variational
eigensolving in the low qubit number regime [0.0]
We introduce Quantum Sampling Regression (QSR), an alternative hybrid quantum-classical algorithm.
We analyze some of its use cases based on time complexity in the low qubit number regime.
We demonstrate the efficacy of our algorithm for a benchmark problem.
arXiv Detail & Related papers (2020-12-04T00:01:15Z) - Momentum Q-learning with Finite-Sample Convergence Guarantee [49.38471009162477]
This paper analyzes a class of momentum-based Q-learning algorithms with finite-sample guarantee.
We establish the convergence guarantee for MomentumQ with linear function approximations and Markovian sampling.
We demonstrate through various experiments that the proposed MomentumQ outperforms other momentum-based Q-learning algorithms.
arXiv Detail & Related papers (2020-07-30T12:27:03Z) - Efficient phase-factor evaluation in quantum signal processing [1.3614427997190908]
Quantum signal processing (QSP) is a powerful quantum algorithm to exactly implement matrixs on quantum computers.
There is so far no classically stable algorithm allowing computation of the phase factors that are needed to build QSP circuits.
We present here an optimization based method that can accurately compute the phase factors using standard double precision arithmetic operations.
arXiv Detail & Related papers (2020-02-26T17:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.