論文の概要: An ADMM approach for multi-response regression with overlapping groups
and interaction effects
- arxiv url: http://arxiv.org/abs/2303.11155v1
- Date: Mon, 20 Mar 2023 14:43:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 15:10:16.654767
- Title: An ADMM approach for multi-response regression with overlapping groups
and interaction effects
- Title(参考訳): 重なり合うグループと相互作用効果を持つ多応答回帰に対するADMMアプローチ
- Authors: Theophilus Quachie Asenso and Manuela Zucknick
- Abstract要約: 我々は新しい正規化回帰法であるMADMMplassoを提案する。
パラメータ推定のために,重なり合うグループを簡単な方法で実装できるADMMアルゴリズムを開発した。
薬理ゲノミクス・スクリーン・データセットのシミュレーションと解析の結果,提案手法は相関応答と相互作用効果の処理に有利であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we consider the regularized multi-response regression problem
where there exists some structural relation within the responses and also
between the covariates and a set of modifying variables. To handle this
problem, we propose MADMMplasso, a novel regularized regression method. This
method is able to find covariates and their corresponding interactions, with
some joint association with multiple related responses. We allow the
interaction term between covariate and modifying variable to be included in a
(weak) asymmetrical hierarchical manner by first considering whether the
corresponding covariate main term is in the model. For parameter estimation, we
develop an ADMM algorithm that allows us to implement the overlapping groups in
a simple way. The results from the simulations and analysis of a
pharmacogenomic screen data set show that the proposed method has an advantage
in handling correlated responses and interaction effects, both with respect to
prediction and variable selection performance.
- Abstract(参考訳): 本稿では,応答内および共変量と修正変数の集合の間に構造的関係が存在する正則化多重応答回帰問題を考える。
そこで本研究では,新しい正規化回帰法であるMADMMplassoを提案する。
この方法は共変量とその対応する相互作用を見つけることができ、複数の関連する反応といくつかの結合関係を持つ。
共変量と修正変数の間の相互作用項を、対応する共変量主項がそのモデルに含まれるかどうかを第一に考慮して、(弱)非対称階層的な方法で含めることができる。
パラメータ推定のために,重なり合うグループを簡単な方法で実装できるADMMアルゴリズムを開発した。
薬理ゲノミクススクリーンデータセットのシミュレーションおよび解析の結果,提案手法は,予測と可変選択性能の両方において,相関応答と相互作用効果の処理に有利であることが示された。
関連論文リスト
- Linked shrinkage to improve estimation of interaction effects in
regression models [0.0]
回帰モデルにおける双方向相互作用項によく適応する推定器を開発する。
我々は,選択戦略では難しい推論モデルの可能性を評価する。
私たちのモデルは、かなり大きなサンプルサイズであっても、ランダムな森林のような、より高度な機械学習者に対して非常に競争力があります。
論文 参考訳(メタデータ) (2023-09-25T10:03:39Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - HiPerformer: Hierarchically Permutation-Equivariant Transformer for Time
Series Forecasting [56.95572957863576]
本稿では,同じ群を構成する成分間の関係と群間の関係を考察した階層的置換同変モデルを提案する。
実世界のデータを用いた実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-05-14T05:11:52Z) - Covariance regression with random forests [0.0]
CovRegRF は CRAN 上の R パッケージで実装されている。
また,本手法を甲状腺疾患データに適用した。
論文 参考訳(メタデータ) (2022-09-16T21:21:18Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Machine Learning for Multi-Output Regression: When should a holistic
multivariate approach be preferred over separate univariate ones? [62.997667081978825]
ランダムフォレストのような木に基づくアンサンブルは、統計学の手法の中で近代的な古典である。
これらの手法を広範囲なシミュレーションで比較し,多変量アンサンブル技術を用いた場合の主問題に答える。
論文 参考訳(メタデータ) (2022-01-14T08:44:25Z) - CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator [60.799183326613395]
本稿では, 相互に負に相関した複数のサンプルに基づく分類的確率変数の非バイアス推定器を提案する。
CARMSは、ReINFORCEとコプラベースのサンプリングを組み合わせることで、重複サンプルを回避し、その分散を低減し、重要サンプリングを使用して推定器を偏りなく維持する。
我々は、生成的モデリングタスクと構造化された出力予測タスクに基づいて、いくつかのベンチマークデータセット上でCARMSを評価し、強力な自己制御ベースラインを含む競合する手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-10-26T20:14:30Z) - On the Use of Minimum Penalties in Statistical Learning [2.1320960069210475]
本稿では,多変量回帰モデルと結果変数の関係を同時に推定する枠組みを提案する。
現状技術手法を一般化する反復アルゴリズムを解法として提案する。
我々は、提案したMinPenフレームワークを他の指数関数的なファミリー損失関数に拡張し、複数の二項応答に特異的に焦点をあてる。
論文 参考訳(メタデータ) (2021-06-09T16:15:46Z) - A variational inference framework for inverse problems [0.39373541926236766]
変分ベイズ近似を用いて逆問題モデルに適合するフレームワークを提示する。
この方法論は、幅広いアプリケーションに対する統計モデル仕様への柔軟性を保証する。
バイオメディカルな問題に動機づけられた画像処理アプリケーションとシミュレーションエクササイズは、変分ベイズによって提供される計算上の利点を明らかにする。
論文 参考訳(メタデータ) (2021-03-10T07:37:20Z) - The MELODIC family for simultaneous binary logistic regression in a
reduced space [0.5330240017302619]
同時バイナリロジスティック回帰モデリングのためのMELODICファミリーを提案する。
モデルは、ロジスティック回帰係数または双極子の観点から解釈することができる。
薬物摂取プロファイルに関連する性格特性と、うつ病や不安障害に関連する性格特性の2つの応用が詳細に示されている。
論文 参考訳(メタデータ) (2021-02-16T15:47:20Z) - Adaptive Correlated Monte Carlo for Contextual Categorical Sequence
Generation [77.7420231319632]
我々は,モンテカルロ (MC) ロールアウトの集合を分散制御のために評価する政策勾配推定器に,カテゴリー列の文脈的生成を適用する。
また,二分木ソフトマックスモデルに相関したMCロールアウトを用いることで,大語彙シナリオにおける高生成コストを低減できることを示す。
論文 参考訳(メタデータ) (2019-12-31T03:01:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。