LLM-based Agent Simulation for Maternal Health Interventions: Uncertainty Estimation and Decision-focused Evaluation
- URL: http://arxiv.org/abs/2503.22719v1
- Date: Tue, 25 Mar 2025 20:24:47 GMT
- Title: LLM-based Agent Simulation for Maternal Health Interventions: Uncertainty Estimation and Decision-focused Evaluation
- Authors: Sarah Martinson, Lingkai Kong, Cheol Woo Kim, Aparna Taneja, Milind Tambe,
- Abstract summary: Agent-based simulation is crucial for modeling complex human behavior.<n>Traditional approaches require extensive domain knowledge and large datasets.<n>Large language models (LLMs) offer a promising alternative by leveraging broad world knowledge.
- Score: 30.334268991701727
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Agent-based simulation is crucial for modeling complex human behavior, yet traditional approaches require extensive domain knowledge and large datasets. In data-scarce healthcare settings where historic and counterfactual data are limited, large language models (LLMs) offer a promising alternative by leveraging broad world knowledge. This study examines an LLM-driven simulation of a maternal mobile health program, predicting beneficiaries' listening behavior when they receive health information via automated messages (control) or live representatives (intervention). Since uncertainty quantification is critical for decision-making in health interventions, we propose an LLM epistemic uncertainty estimation method based on binary entropy across multiple samples. We enhance model robustness through ensemble approaches, improving F1 score and model calibration compared to individual models. Beyond direct evaluation, we take a decision-focused approach, demonstrating how LLM predictions inform intervention feasibility and trial implementation in data-limited settings. The proposed method extends to public health, disaster response, and other domains requiring rapid intervention assessment under severe data constraints. All code and prompts used for this work can be found at https://github.com/sarahmart/LLM-ABS-ARMMAN-prediction.
Related papers
- MF-LLM: Simulating Collective Decision Dynamics via a Mean-Field Large Language Model Framework [53.82097200295448]
Mean-Field LLM (MF-LLM) framework explicitly models the feedback loop between micro-level decisions and macro-level population.
MF-LLM alternates between two models: a policy model that generates individual actions based on personal states and group-level information, and a mean field model that updates the population distribution.
We evaluate MF-LLM on a real-world social dataset, where it reduces KL divergence to human population distributions by 47 percent over non-mean-field baselines.
arXiv Detail & Related papers (2025-04-30T12:41:51Z) - Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics [8.692647930497936]
We use conformal analysis to quantify the predictive uncertainty of a vision transformer based foundation model.<n>We show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model.
arXiv Detail & Related papers (2025-03-31T08:06:00Z) - Uncertainty Estimation of Large Language Models in Medical Question Answering [60.72223137560633]
Large Language Models (LLMs) show promise for natural language generation in healthcare, but risk hallucinating factually incorrect information.
We benchmark popular uncertainty estimation (UE) methods with different model sizes on medical question-answering datasets.
Our results show that current approaches generally perform poorly in this domain, highlighting the challenge of UE for medical applications.
arXiv Detail & Related papers (2024-07-11T16:51:33Z) - Assessing biomedical knowledge robustness in large language models by query-efficient sampling attacks [0.6282171844772422]
An increasing depth of parametric domain knowledge in large language models (LLMs) is fueling their rapid deployment in real-world applications.
The recent discovery of named entities as adversarial examples in natural language processing tasks raises questions about their potential impact on the knowledge robustness of pre-trained and finetuned LLMs.
We developed an embedding-space attack based on powerscaled distance-weighted sampling to assess the robustness of their biomedical knowledge.
arXiv Detail & Related papers (2024-02-16T09:29:38Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
We introduce a latent inference budget model (L-IBM) that models agents' computational constraints explicitly.
L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors.
We show that L-IBMs match or outperform Boltzmann models of decision-making under uncertainty.
arXiv Detail & Related papers (2023-12-07T03:55:51Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - A Differentially Private Weighted Empirical Risk Minimization Procedure and its Application to Outcome Weighted Learning [4.322221694511603]
Differential privacy (DP) is an appealing framework for addressing data privacy issues.
DP provides mathematically provable bounds on the privacy loss incurred when releasing information from sensitive data.
We propose the first differentially private algorithm for general wERM, with theoretical DP guarantees.
arXiv Detail & Related papers (2023-07-24T21:03:25Z) - Policy Optimization for Personalized Interventions in Behavioral Health [8.10897203067601]
Behavioral health interventions, delivered through digital platforms, have the potential to significantly improve health outcomes.
We study the problem of optimizing personalized interventions for patients to maximize a long-term outcome.
We present a new approach for this problem that we dub DecompPI, which decomposes the state space for a system of patients to the individual level.
arXiv Detail & Related papers (2023-03-21T21:42:03Z) - Robust Fitted-Q-Evaluation and Iteration under Sequentially Exogenous
Unobserved Confounders [16.193776814471768]
We study robust policy evaluation and policy optimization in the presence of sequentially-exogenous unobserved confounders.
We provide sample complexity bounds, insights, and show effectiveness both in simulations and on real-world longitudinal healthcare data of treating sepsis.
arXiv Detail & Related papers (2023-02-01T18:40:53Z) - Monitoring machine learning (ML)-based risk prediction algorithms in the
presence of confounding medical interventions [4.893345190925178]
Performance monitoring of machine learning (ML)-based risk prediction models in healthcare is complicated by the issue of confounding medical interventions (CMI)
A simple approach is to ignore CMI and monitor only the untreated patients, whose outcomes remain unaltered.
We show that valid inference is still possible if one monitors conditional performance and if either conditional exchangeability or time-constant selection bias hold.
arXiv Detail & Related papers (2022-11-17T18:54:34Z) - Modeling Disagreement in Automatic Data Labelling for Semi-Supervised
Learning in Clinical Natural Language Processing [2.016042047576802]
We investigate the quality of uncertainty estimates from a range of current state-of-the-art predictive models applied to the problem of observation detection in radiology reports.
arXiv Detail & Related papers (2022-05-29T20:20:49Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
We introduce the K-Heterogeneous Markov Decision Process (K-Hetero MDP) to address sequential decision problems with population heterogeneity.
We propose the Auto-Clustered Policy Evaluation (ACPE) for estimating the value of a given policy, and the Auto-Clustered Policy Iteration (ACPI) for estimating the optimal policy in a given policy class.
We present simulations to support our theoretical findings, and we conduct an empirical study on the standard MIMIC-III dataset.
arXiv Detail & Related papers (2022-01-31T20:58:47Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.