論文の概要: Conformal Prediction for Time Series with Modern Hopfield Networks
- arxiv url: http://arxiv.org/abs/2303.12783v1
- Date: Wed, 22 Mar 2023 17:52:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 13:09:14.276479
- Title: Conformal Prediction for Time Series with Modern Hopfield Networks
- Title(参考訳): ホップフィールドネットワークを用いた時系列の共形予測
- Authors: Andreas Auer, Martin Gauch, Daniel Klotz, Sepp Hochreiter
- Abstract要約: 本稿では,時系列の共形予測手法であるHopCPTを提案する。
我々は,時間的依存関係が存在する時系列に対して理論的に妥当であることを示す。
- 参考スコア(独自算出の注目度): 5.424335190864443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To quantify uncertainty, conformal prediction methods are gaining
continuously more interest and have already been successfully applied to
various domains. However, they are difficult to apply to time series as the
autocorrelative structure of time series violates basic assumptions required by
conformal prediction. We propose HopCPT, a novel conformal prediction approach
for time series that not only copes with temporal structures but leverages
them. We show that our approach is theoretically well justified for time series
where temporal dependencies are present. In experiments, we demonstrate that
our new approach outperforms state-of-the-art conformal prediction methods on
multiple real-world time series datasets from four different domains.
- Abstract(参考訳): 不確かさを定量化するために、コンフォメーション予測手法は継続的に関心を集めており、既に様々な領域に適用されている。
しかし、時系列の自己相関構造が共形予測に必要な基本的な仮定に反するため、時系列に適用することは困難である。
本稿では,時間構造に対処するだけでなく,それらを活用する時系列の共形予測手法であるHopCPTを提案する。
我々は,時間的依存関係が存在する時系列に対して理論的に妥当であることを示す。
実験では、4つの異なる領域の複数の実世界の時系列データセットにおいて、新しいアプローチが最先端のコンフォメーション予測手法より優れていることを示す。
関連論文リスト
- Implicit Reasoning in Deep Time Series Forecasting [16.750280337155647]
この研究は、ディープ時系列予測モデルの推論能力を評価するための最初の一歩を踏み出した。
系統的に編成されたアウト・オブ・ディストリビューションシナリオにおいて,ある線形なパッチベーストランスフォーマーモデルが効果的に一般化できることが判明した。
論文 参考訳(メタデータ) (2024-09-17T02:11:19Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Sequential Predictive Conformal Inference for Time Series [16.38369532102931]
逐次データ(例えば時系列)に対する分布自由共形予測アルゴリズムを提案する。
具体的には,時系列データは交換不可能であり,既存の共形予測アルゴリズムでは適用できない性質を具体的に説明する。
論文 参考訳(メタデータ) (2022-12-07T05:07:27Z) - Copula Conformal Prediction for Multi-step Time Series Forecasting [18.298634240183862]
時系列予測のためのCopula Conformal Predictionアルゴリズム,CopulaCPTSを提案する。
我々は,CopulaCPTSが既存の手法よりも多段階予測タスクに対して,よりキャリブレーションと鋭い信頼区間を生成することを示す。
論文 参考訳(メタデータ) (2022-12-06T19:32:06Z) - Monitoring Time Series With Missing Values: a Deep Probabilistic
Approach [1.90365714903665]
本研究では,高次元時系列における予測の最先端手法と不確実性の完全な確率的ハンドリングを組み合わせた時系列モニタリングのための新しいアーキテクチャを提案する。
本稿では、時系列予測と新規性検出のアーキテクチャの利点を、特に部分的に欠落したデータで示し、実世界のデータセットにおける最先端のアプローチとアーキテクチャを実証的に評価し比較する。
論文 参考訳(メタデータ) (2022-03-09T17:53:47Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
メタグローバルローカル自動回帰(Meta-GLAR)と呼ばれる新しい予測手法を導入する。
それは、リカレントニューラルネットワーク(RNN)によって生成された表現からワンステップアヘッド予測へのマッピングをクローズドフォームで学習することで、各時系列に適応する。
本手法は,先行研究で報告されたサンプル外予測精度において,最先端の手法と競合する。
論文 参考訳(メタデータ) (2021-11-05T11:45:02Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
本稿では,高次元時系列データを予測するための3段階フレームワークを提案する。
当社のフレームワークは非常に汎用的で,各ステップで時系列予測やクラスタリングが利用可能です。
単純な線形自己回帰モデルでインスタンス化されると、いくつかのベンチマークデータセットで最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-10-26T20:41:19Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
位相空間特性を暗黙的に学習する機構を持つ人工ニューラルネットワークを提案する。
私たちのアプローチは、ほとんどの最先端戦略と同じくらいの競争力があるか、あるいは優れているかのどちらかです。
論文 参考訳(メタデータ) (2020-06-19T21:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。