論文の概要: Inherent Consistent Learning for Accurate Semi-supervised Medical Image
Segmentation
- arxiv url: http://arxiv.org/abs/2303.14175v1
- Date: Fri, 24 Mar 2023 17:38:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 13:24:04.350955
- Title: Inherent Consistent Learning for Accurate Semi-supervised Medical Image
Segmentation
- Title(参考訳): 半教師付き医用画像セグメンテーションにおける固有一貫性学習
- Authors: Ye Zhu, Jie Yang, Si-Qi Liu and Ruimao Zhang
- Abstract要約: 頑健なセマンティックなカテゴリー表現を学習するための新しい一貫性のある一貫性学習法を提案する。
提案手法は,特に注釈付きデータの数が極端に限られている場合,最先端の手法よりも優れる。
- 参考スコア(独自算出の注目度): 30.06702813637713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised medical image segmentation has attracted much attention in
recent years because of the high cost of medical image annotations. In this
paper, we propose a novel Inherent Consistent Learning (ICL) method, which aims
to learn robust semantic category representations through the semantic
consistency guidance of labeled and unlabeled data to help segmentation. In
practice, we introduce two external modules namely Supervised Semantic Proxy
Adaptor (SSPA) and Unsupervised Semantic Consistent Learner (USCL) that based
on the attention mechanism to align the semantic category representations of
labeled and unlabeled data, as well as update the global semantic
representations over the entire training set. The proposed ICL is a
plug-and-play scheme for various network architectures and the two modules are
not involved in the testing stage. Experimental results on three public
benchmarks show that the proposed method can outperform the state-of-the-art
especially when the number of annotated data is extremely limited. Code is
available at: https://github.com/zhuye98/ICL.git.
- Abstract(参考訳): 近年,医用画像アノテーションのコストが高いことから,半監督的医用画像分割が注目されている。
本稿では,ラベル付きおよびラベル付きデータの意味的一貫性ガイダンスを通じて,ロバストな意味カテゴリー表現を学習し,セグメンテーションを支援する新しい本質的一貫性学習(icl)手法を提案する。
実際には、ラベル付きおよびラベルなしデータのセマンティックなカテゴリ表現を整列するアテンション機構に基づいて、トレーニングセット全体にわたってグローバルなセマンティックなセマンティックな表現を更新する2つの外部モジュール、SSPA(Supervised Semantic Proxy Adaptor)とUnsupervised Semantic Consistent Learner(USCL)を導入する。
iclは様々なネットワークアーキテクチャのためのプラグイン・アンド・プレイ方式であり、2つのモジュールはテスト段階には関与していない。
3つの公開ベンチマークによる実験結果から,提案手法は特に注釈付きデータの数が極めて限られている場合に,最先端の手法よりも優れていることが示された。
コードはhttps://github.com/zhuye98/icl.git。
関連論文リスト
- Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
医用画像の構造を分割するマルチスケールクロススーパービジョンコントラスト学習フレームワークを開発した。
提案手法は,頑健な特徴表現を抽出するために,地上構造と横断予測ラベルに基づくマルチスケール特徴と対比する。
Diceでは最先端の半教師あり手法を3.0%以上上回っている。
論文 参考訳(メタデータ) (2023-06-25T16:55:32Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
半教師付き医用画像分割は、大規模医用画像解析に有望な解決策を提供する。
本稿では、二重分類器(DC-Net)に基づくクロス教師あり学習フレームワークを提案する。
LAとPancreas-CTデータセットの実験は、DC-Netが半教師付きセグメンテーションの他の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-25T16:23:39Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
ゼロショット設定に適用した場合、最先端の教師付き性能を実現するセマンティックセマンティックセマンティクスへのアプローチを提案する。
これは各クラスラベルを、クラスを記述する短い段落のベクトル値の埋め込みに置き換えることによって達成される。
結果として得られた200万以上の画像の統合セマンティックセグメンテーションデータセットは、7つのベンチマークデータセット上の最先端の教師付きメソッドと同等のパフォーマンスを達成するモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-02-04T07:19:09Z) - All-Around Real Label Supervision: Cyclic Prototype Consistency Learning
for Semi-supervised Medical Image Segmentation [41.157552535752224]
半教師付き学習は、費用がかかる専門家によるアノテーションの取得の重い負担を軽減するため、医用画像のセグメンテーションが大幅に進歩している。
本稿では,ラベル付き-ラベル付き(L2U)フォワードプロセスとラベル付き-ラベル付き(U2L)バックワードプロセスによって構築された,新しいサイクリックプロトタイプ一貫性学習(CPCL)フレームワークを提案する。
我々のフレームワークは、過去のtextit"教師なし"一貫性を新しいtextit"教師なし"一貫性に変える。
論文 参考訳(メタデータ) (2021-09-28T14:34:06Z) - Federated Semi-supervised Medical Image Classification via Inter-client
Relation Matching [58.26619456972598]
フェデレートラーニング(FL)は、ディープ・ネットワークのトレーニングのために、分散医療機関とのコラボレーションで人気が高まっている。
本報告では,実践的かつ困難なFL問題であるtextitFederated Semi-supervised Learning (FSSL)について検討する。
本稿では, 従来の整合性正規化機構を改良し, クライアント間関係マッチング方式を提案する。
論文 参考訳(メタデータ) (2021-06-16T07:58:00Z) - Contrastive Semi-Supervised Learning for 2D Medical Image Segmentation [16.517086214275654]
フルイメージではなく,画像パッチにContrastive Learning(CL)を適用した,新しい半教師付き2次元医療セグメンテーションソリューションを提案する。
これらのパッチは、擬似ラベリングによって得られた異なるクラスの意味情報を用いて有意義に構築される。
また,コントラスト学習と相乗効果を持つ新しい整合正規化手法を提案する。
論文 参考訳(メタデータ) (2021-06-12T15:43:24Z) - Every Annotation Counts: Multi-label Deep Supervision for Medical Image
Segmentation [85.0078917060652]
この障壁を克服する半弱教師付きセグメンテーションアルゴリズムを提案する。
このアプローチは,深層指導と生徒・教師モデルの新しい定式化に基づいている。
我々の新しいセグメンテーションのトレーニング体制は、完全にラベル付けされ、バウンディングボックスでマークされた画像、単にグローバルラベル、あるいは全くないイメージを柔軟に活用することで、高価なラベルの要件を94.22%削減することができる。
論文 参考訳(メタデータ) (2021-04-27T14:51:19Z) - A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision [62.4773770041279]
そこで我々は,臓器と病変のセグメンテーションのための教師と学生のスタイルに基づくセミ教師付き学習フレームワークを開発した。
我々は,本モデルがバウンディングボックスの品質に対して堅牢であることを示し,フル教師付き学習手法と比較した性能を実現する。
論文 参考訳(メタデータ) (2020-10-23T07:58:20Z) - Semi-supervised Medical Image Segmentation through Dual-task Consistency [18.18484640332254]
本稿では,画素単位のセグメンテーションマップと,ターゲットの幾何認識レベルセット表現を共同で予測する,新しいデュアルタスクディープネットワークを提案する。
本手法はラベルなしデータを組み込むことで性能を大幅に向上させることができる。
当フレームワークは,最先端の半教師付き医用画像分割法より優れている。
論文 参考訳(メタデータ) (2020-09-09T17:49:21Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。