Spatially-Aware Car-Sharing Demand Prediction
- URL: http://arxiv.org/abs/2303.14421v1
- Date: Sat, 25 Mar 2023 10:10:11 GMT
- Title: Spatially-Aware Car-Sharing Demand Prediction
- Authors: Dominik J. M\"uhlematter, Nina Wiedemann, Yanan Xin and Martin Raubal
- Abstract summary: We analyze the average monthly demand in a station-based car-sharing service with spatially-aware learning algorithms.
We show that the global Random Forest model with geo-coordinates as an input feature achieves the highest predictive performance with an R-squared score of 0.87.
Our study offers effective as well as highly interpretable methods for diagnosing and planning the placement of car-sharing stations.
- Score: 3.085449079520639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, car-sharing services have emerged as viable alternatives to
private individual mobility, promising more sustainable and resource-efficient,
but still comfortable transportation. Research on short-term prediction and
optimization methods has improved operations and fleet control of car-sharing
services; however, long-term projections and spatial analysis are sparse in the
literature. We propose to analyze the average monthly demand in a station-based
car-sharing service with spatially-aware learning algorithms that offer high
predictive performance as well as interpretability. In particular, we compare
the spatially-implicit Random Forest model with spatially-aware methods for
predicting average monthly per-station demand. The study utilizes a rich set of
socio-demographic, location-based (e.g., POIs), and car-sharing-specific
features as input, extracted from a large proprietary car-sharing dataset and
publicly available datasets. We show that the global Random Forest model with
geo-coordinates as an input feature achieves the highest predictive performance
with an R-squared score of 0.87, while local methods such as Geographically
Weighted Regression perform almost on par and additionally yield exciting
insights into the heterogeneous spatial distributions of factors influencing
car-sharing behaviour. Additionally, our study offers effective as well as
highly interpretable methods for diagnosing and planning the placement of
car-sharing stations.
Related papers
- Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - Leverage Multi-source Traffic Demand Data Fusion with Transformer Model for Urban Parking Prediction [4.672121078249809]
This study proposes a parking availability prediction framework integrating spatial-temporal deep learning with multi-source data fusion.
The framework is based on the Transformer as the spatial-temporal deep learning model.
Real-world empirical data was used to verify the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-05-02T07:28:27Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Learning to Drive Anywhere [38.547150940396904]
We propose AnyD, a single geographically-aware conditional imitation learning model.
Our key insight is to introduce a high-capacity geo-location-based channel attention mechanism.
Our proposed approach can efficiently scale across inherently imbalanced data distributions and location-dependent events.
arXiv Detail & Related papers (2023-09-21T17:55:36Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - A Baselined Gated Attention Recurrent Network for Request Prediction in
Ridesharing [1.0312968200748118]
Ridesharing has received global popularity due to its convenience and cost efficiency for both drivers and passengers.
The goal of the RSODP (Origin-Destination Prediction for Ridesharing) problem is to predict the future ridesharing requests and provide schedules for vehicles ahead of time.
Most of existing prediction models utilise Deep Learning, however they fail to effectively consider both spatial and temporal dynamics.
arXiv Detail & Related papers (2022-07-11T08:41:24Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
This paper studies the distribution shift problem from the perspective of pre-training and data augmentation.
We provide the first comprehensive empirical study focusing on pre-training and data augmentation.
arXiv Detail & Related papers (2022-05-25T13:04:53Z) - A Clustering-aided Ensemble Method for Predicting Ridesourcing Demand in
Chicago [0.0]
This study proposes a Clustering-aided Ensemble Method (CEM) to forecast the zone-to-zone travel demand for ridesourcing services.
We implement and test the proposed methodology by using the ridesourcing-trip data in Chicago.
arXiv Detail & Related papers (2021-09-08T04:58:29Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
We develop a parking lot environment and collect a dataset of human parking maneuvers.
We compare a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline.
Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment
arXiv Detail & Related papers (2020-04-21T20:46:32Z) - GISNet: Graph-Based Information Sharing Network For Vehicle Trajectory
Prediction [6.12727713172576]
Many AI-oriented companies, such as Google, Uber and DiDi, are investigating more accurate vehicle trajectory prediction algorithms.
In this paper, we propose a novel graph-based information sharing network (GISNet) that allows the information sharing between the target vehicle and its surrounding vehicles.
arXiv Detail & Related papers (2020-03-22T03:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.